Skip to main navigation menu Skip to main content Skip to site footer

Remoción de fosfato de ambientes acuáticos utilizando nanopartículas modificadas de Fe-Co/Quitosan

Abstract

Chitosan modified iron-cobalt nanoparticles (CMNPs) were used for phosphate adsorption in synthetic wastewater and river water from the Jordan river in Tunja, Boyacá, Colombia. Phosphate adsorption by CMNPs reached 52.7% in synthetic wastewater and 58.7% in water taken from the Jordan river. This indicates that the CMNPs ability to adsorb phosphates is independent of other components within river water. Additionally, adsorption measurements were taken using the average pH, temperature, and phosphate concentration of the river water in order to ensure results comparable to those of (Kim 2017). A maximum adsorption rate of 0.138 mg of phosphate per gram of adsorbent was found with the majority of adsorption taking place within the first 15 minutes of contact with the adsorbent. The adsorption of phosphates using CMNPs presents an effective and environmentally friendly solution to reducing phosphates in aquatic ecosystems without altering the characteristics of river water.

Keywords

Chitosan, Iron-Cobalt Nanoparticles, Phosphate Adsorption, Wastewater Treatment

PDF (Español)

References

  1. I. L. Pepper, G. C. P., and M. L. Brusseau, Environmental and Pollution Science 2nd Edition. Elsevier Inc., 2006.
  2. G. J. Tortora and B. H. Derrickson, Principles of Anatomy and Physiology 12th Edition. Hoboken, New Jersey: John Wiley & Sons Inc., 2009.
  3. J. O. Drangert, “Phosphorus - A limited resource that could be made limitless,” Procedia Eng., vol. 46, pp. 228–233, 2012, doi: 10.1016/j.proeng.2012.09.469. DOI: https://doi.org/10.1016/j.proeng.2012.09.469
  4. D. Wasley, “Phosphorus: Sources, Forms, Impact on Water Quality - A General Overview,” Minnesota, 2007.
  5. M. F. Chislock, E. Doster, R. Zitomer, and A. E. Wilson, “Eutrophication: Causes, consequences, and controls in aquatic ecosystems,” Nat. Educ. Knowl., vol. 4, pp. 1–8, Jan. 2013.
  6. K. Campbell, “The Effects of Sewage on Aquatic Ecosystems,” 2008. .
  7. M. Meybeck, “Carbon, nitrogen, and phosphorus transport by world rivers,” Am. J. Sci., vol. 282, no. 4, pp. 401–450, 1982, doi: 10.2475/ajs.282.4.401. DOI: https://doi.org/10.2475/ajs.282.4.401
  8. Corpoboyaca, “Diagnostico del plan de ordenamiento hídrico- PORH de la cuenca media y alta del rio chicamocha,” Tunja, 2015.
  9. J. H. Kim, S. B. Kim, S. H. Lee, and J. W. Choi, “Laboratory and pilot-scale field experiments for application of iron oxide nanoparticle-loaded chitosan composites to phosphate removal from natural water,” Environ. Technol. (United Kingdom), vol. 39, no. 6, pp. 770–779, 2018, doi: 10.1080/09593330.2017.1310937. DOI: https://doi.org/10.1080/09593330.2017.1310937
  10. H. Jiang, P. Chen, S. Luo, X. Tu, Q. Cao, and M. Shu, “Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate,” Appl. Surf. Sci., vol. 284, pp. 942–949, 2013, doi: https://doi.org/10.1016/j.apsusc.2013.04.013. DOI: https://doi.org/10.1016/j.apsusc.2013.04.013
  11. D. Liu, P. Wang, G. Wei, W. Dong, and F. Hui, “Removal of algal blooms from freshwater by the coagulation-magnetic separation method,” Environ. Sci. Pollut. Res., vol. 20, no. 1, pp. 60–65, 2013, doi: 10.1007/s11356-012-1052-4. DOI: https://doi.org/10.1007/s11356-012-1052-4
  12. P. Nechita, “Applications of Chitosan in Wastewater Treatment,” in Biological Activities and Application of Marine Polysaccharides, 2017, pp. 209–228. DOI: https://doi.org/10.5772/65289
  13. H. Chiriac, A. E. Moga, and C. Gherasim, “Preparation and characterization of Co, Fe and Co-Fe magnetic nanoparticles,” J. Optoelectron. Adv. Mater., vol. 10, pp. 3492–3496, Dec. 2008.
  14. A. M. Escobaro, L. R. Pizzio, and G. P. Romanelli, “Catalizadores Magnéticos Basados En Óxidos De Hierro: Síntesis, Propiedades Y Aplicaciones,” Ciencia En Desarrollo, vol. 10, no. 1, pp. 79–101, 2018, doi: 10.19053/01217488.v10.n1.2019.8811. DOI: https://doi.org/10.19053/01217488.v10.n1.2019.8811
  15. Á. P. Sánchez Cepeda, R. Vera Graziano, E. de J. Muñoz Prieto, E. Y. Gomez Pachón, M. J. Bernard Bernard, and A. Maciel Cerda, “Preparación y caracterización de membranas poliméricas electrohiladas de policaprolactona y quitosano para la liberación controlada de clorhidrato de tiamina,” Ciencia En Desarrollo, vol. 7, no. 2, p. 133, 2016, doi: 10.19053/01217488.v7.n2.2016.4818. DOI: https://doi.org/10.19053/01217488.v7.n2.2016.4818
  16. Y. Huang, X. Lee, M. Grattieri, F. Macazo, R. Cai, and S. Minteer, “A sustainable adsorbent for phosphate removal: modifying multi-walled carbon nanotubes with chitosan,” J. Mater. Sci., vol. 53, no. 17, pp. 12641–12649, Sep. 2018, doi: 10.1007/s10853-018-2494-y. DOI: https://doi.org/10.1007/s10853-018-2494-y
  17. I. de Vicente, A. Merino-Martos, L. Cruz-Pizarro, and J. de Vicente, “On the use of magnetic nano and microparticles for lake restoration,” J. Hazard. Mater., vol. 181, no. 1–3, pp. 375–381, 2010, doi: 10.1016/j.jhazmat.2010.05.020. DOI: https://doi.org/10.1016/j.jhazmat.2010.05.020
  18. L. S. Clesceri et al., Standard Methods for the Examination of Water and Wastewater, no. v. 20. American Public Health Association, 1998.
  19. I. Langmuir, “The constitution and fundamental properties of solids and liquids,” J. Am. Chem. Soc., vol. 38, no. 11, pp. 2221–2295, Nov. 1916, doi: 10.1021/ja02268a002. DOI: https://doi.org/10.1021/ja02268a002
  20. Z. Ali, “Extraction and Characterization of Chitosan from Indian Prawn (Fenneropenaeus Indicus) and its Applications on Waste Water Treatment of Local Ghee Industry,” IOSR J. Eng., vol. 3, pp. 28–37, Oct. 2013, doi: 10.9790/3021-031022837. DOI: https://doi.org/10.9790/3021-031022837
  21. S. Hong, Y. Chang, and I. Rhee, “Chitosan-Coated Ferrite (Fe3O4) Nanoparticles as a T2 Contrast Agent for Magnetic Resonance Imaging,” J. Korean Phys. Soc., vol. 56, no. 3, pp. 868–873, Mar. 2010, doi: 10.3938/jkps.56.868. DOI: https://doi.org/10.3938/jkps.56.868
  22. F. Croisier and C. Jérôme, “Chitosan-based biomaterials for tissue engineering,” Eur. Polym. J., vol. 49, no. 4, pp. 780–792, 2013, doi: 10.1016/j.eurpolymj.2012.12.009. DOI: https://doi.org/10.1016/j.eurpolymj.2012.12.009
  23. S. Yasmeen, M. Kabiraz, B. Saha, M. Qadir, M. Gafur, and S. Masum, “Chromium (VI) Ions Removal from Tannery Effluent using Chitosan-Microcrystalline Cellulose Composite as Adsorbent,” Int. Res. J. Pure Appl. Chem., vol. 10, no. 4, pp. 1–14, 2016, doi: 10.9734/irjpac/2016/23315. DOI: https://doi.org/10.9734/IRJPAC/2016/23315
  24. S. Logpriya et al., “Preparation and characterization of ascorbic acid-mediated chitosan–copper oxide nanocomposite for anti-microbial, sporicidal and biofilm-inhibitory activity,” J. Nanostructure Chem., vol. 8, no. 3, pp. 301–309, 2018, doi: 10.1007/s40097-018-0273-6. DOI: https://doi.org/10.1007/s40097-018-0273-6
  25. I. A. Kumar and N. Viswanathan, “A facile synthesis of magnetic particles sprayed gelatin embedded hydrotalcite composite for effective phosphate sorption,” J. Environ. Chem. Eng., vol. 6, no. 1, pp. 208–217, 2018, doi: 10.1016/j.jece.2017.11.042. DOI: https://doi.org/10.1016/j.jece.2017.11.042
  26. X. Chen, “Modeling of experimental adsorption isotherm data,” Information, vol. 6, no. 1, pp. 14–22, 2015, doi: 10.3390/info6010014. DOI: https://doi.org/10.3390/info6010014
  27. C. Tejada, A. Herrera, and E. Ruiz, “Utilización de biosorbentes para la remoción de níquel y plomo en sistemas binarios,” Ciencia En Desarrollo, vol. 7, no. 1, pp. 31–36, 2016, doi: 10.19053/01217488.4228. DOI: https://doi.org/10.19053/01217488.4228
  28. A. Funes, J. de Vicente, and I. de Vicente, “Synthesis and characterization of magnetic chitosan microspheres as low-density and low-biotoxicity adsorbents for lake restoration,” Chemosphere, vol. 171, pp. 571–579, 2017, doi: 10.1016/j.chemosphere.2016.12.101. DOI: https://doi.org/10.1016/j.chemosphere.2016.12.101
  29. H. M. F. Freundlich, “Over the Adsorption in Solution,” J. Phys. Chem., vol. 57, pp. 385–471, 1906.

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.