Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Estudio de nuevos complejos metálicos derivados de un ligando flexible polidentado para aplicaciones biológicas y biomédicas

Resumen

El presente estudio muestra la obtención de 4 nuevos complejos lantánidos con iones Gd(III), Eu(III), Dy(III) y Yb(III), con dos ligandos polidentados F y L para evaluar su potencial aplicación en el contraste de imágenes para microscopía de fluorescencia (MF), resonancia magnética de imágenes (RMI) y como agentes antibacterianos. Se propone que los complejos poseen una estructura molecular en donde los ligandos quelan al centro metálico a través de los grupos -OH, -N- y -COO-, exhibiendo un aparente número de coordinación de 7. La relajatividad molar r1 muestra que los 4 complejos son capaces de acelerar el tiempo de relajación longitudinal T1 del agua, obteniéndose un r1 de 6.45 mmol-1·L-1·s-1 para el compuesto 1, el cual fue mayor que el valor 2.25 mmol-1·L-1·s-1 para el Dotarem® usado como medicamento de referencia en RMI. Los rendimientos cuánticos en referencia a la fluoresceína fueron menores al 1%, exhibiendo baja eficiencia en los procesos de emisión de radiación visible. Para los complejos se obtuvieron constantes de estabilidad aparente (-log[kap]) entre 21-18, siendo incluso mejores que algunos agentes de contraste. Finalmente, se confirmó que los complejos obtenidos logran unirse a las hebras del ADN a través de un posible mecanismo de intercalación.

Palabras clave

Ligando polidentado, agente de contraste, resonancia magnética nuclear, iones lantánidos, microscopía de fluorescencia

PDF

Archivo(s) complementario(s)

Material Suplementario

Referencias

  • J. Ye, J. Wang, Q. Li, X. Dong, W. Ge, Y. Chen, X. Jiang, H. Liu, H. Jiang and X. Wang, "Rapid and accurate tumor-target bio-imaging through specific in vivo biosynthesis of a fluorescent europium complex", Biomater. Sci., vol. 4, pp. 652–660, 2016. DOI: 10.1039/C5BM00528K. DOI: https://doi.org/10.1039/C5BM00528K
  • A. King, "Seeking a better contrast", Chemistry World, 2016. [Online]. Available: https://www.chemistryworld.com/feature/new-mri-contrast-agents/1017395.article. [Accessed: 09-Dec-2021].
  • V. C. Pierre, M. J. Allen, and P. Caravan, "Contrast agents for MRI: 30+ years and where are we going? Topical issue on metal-based MRI contrast agents", J. Biol. Inorg. Chem., vol. 19, no. 2, pp. 127–131, 2014. DOI: 10.1007/s00775-013-1074-5. DOI: https://doi.org/10.1007/s00775-013-1074-5
  • J. Lohrke, T. Frenzel, J. Endrikat, F. C. Alves, T. M. Grist, M. Law, J. M. Lee, T. Leiner, K.-C. Li, K. Nikolaou, M. R. Prince, H. H. Schild, J. C. Weinreb, K. Yoshikawa and H. Pietsch, "25 Years of Contrast-Enhanced MRI: Developments, Current Challenges and Future Perspectives", Adv. Ther., vol. 33, no. 1, pp. 1–28, 2016. DOI: 10.1007/s12325-015-0275-4. DOI: https://doi.org/10.1007/s12325-015-0275-4
  • A. Bianchi, L. Calabi, F. Corana, S. Fontana, P. Losi, A. Maiocchi, L. Paleari and B. Valtancoli, "Thermodynamic and structural properties of Gd ( III ) complexes with polyamino-polycarboxylic ligands : basic compounds for the development of MRI contrast agents", Coord. Chem. Rev., vol. 204, pp. 309–393, 2000. DOI: 10.1016/S0010-8545(99)00237-4. DOI: https://doi.org/10.1016/S0010-8545(99)00237-4
  • J. Wahsner, E. M. Gale, A. Rodríguez-Rodríguez, and P. Caravan, "Chemistry of MRI contrast agents: Current challenges and new frontiers", Chem. Rev., vol. 119, no. 2, pp. 957–1057, 2019. DOI: 10.1021/acs.chemrev.8b00363. DOI: https://doi.org/10.1021/acs.chemrev.8b00363
  • A. Barge, G. Cravotto, E. Gianolio, and F. Fedeli, "How to determine free Gd and free ligand in solution of Gd chelates. A technical note", Contrast. Media. Mol. Imaging, vol. 1, no. 5, pp. 184–188, 2006. DOI: 10.1002/cmmi.110. DOI: https://doi.org/10.1002/cmmi.110
  • H. Wang, M. Zhao, J. L. Ackerman, and Y. Song, "Saturation-inversion-recovery: A method for T1 measurement", J. Magn. Reson., vol. 274, no. November, pp. 137–143, 2017. DOI: 10.1016/j.jmr.2016.11.015. DOI: https://doi.org/10.1016/j.jmr.2016.11.015
  • M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, "Determination of the fluorescence quantum yield of quantum dots: Suitable procedures and achievable uncertainties", Anal. Chem., vol. 81, no. 15, pp. 6285–6294, 2009. DOI: 10.1021/ac900308v. DOI: https://doi.org/10.1021/ac900308v
  • J. M. Andrews, "Determination of minimum inhibitory concentrations", J. Antimicrob. Chemother., vol. 49, no. 6, p. 1049, 2002. DOI: 10.1093/jac/dkf083. DOI: https://doi.org/10.1093/jac/dkf083
  • J. D. Londoño-Mosquera, A. Aragón-Muriel, and D. Polo-Cerón, "Synthesis, antibacterial activity and DNA interactions of lanthanide(III) complexes of N(4)-substituted thiosemicarbazones", Univ. Sci., vol. 23, no. 2, pp. 141–169, 2018. DOI: 10.11144/Javeriana.SC23-2.saaa. DOI: https://doi.org/10.11144/Javeriana.SC23-2.saaa
  • G. B. Deacon and R. J. Philibs, "Relationships Between The Carbon-Oxygen Stretching Frecuencies of Carboxilato Complexes and The Type of Carboxylate Coordination", Coord. Chem. Rev., vol. 33, pp. 227–250, 1980. DOI: 10.1016/S0010-8545(00)80455-5. DOI: https://doi.org/10.1016/S0010-8545(00)80455-5
  • M. M. Hincapié-Otero, A. Joaqui-Joaqui, and D. Polo-Cerón, "Synthesis and characterization of four N-acylhydrazones as potential O,N,O donors for Cu2+: An experimental and theoretical study", Univ. Sci., vol. 26, no. 2, pp. 193–215, 2021. DOI: 10.11144/JAVERIANA.SC26-2.SACO. DOI: https://doi.org/10.11144/Javeriana.SC26-2.saco
  • X. C. Su and J. L. Chen, "Site-Specific Tagging of Proteins with Paramagnetic Ions for Determination of Protein Structures in Solution and in Cells", Acc. Chem. Res., vol. 52, no. 6, pp. 1675–1686, 2019. DOI: 10.1021/acs.accounts.9b00132. DOI: https://doi.org/10.1021/acs.accounts.9b00132
  • I. Płowaś, J. Świergiel, and J. Jadżyn, "Electrical conductivity in dimethyl sulfoxide + potassium iodide solutions at different concentrations and temperatures", J. Chem. Eng. Data, vol. 59, no. 8, pp. 2360–2366, 2014. DOI: 10.1021/je4010678. DOI: https://doi.org/10.1021/je4010678
  • D. Polo-Cerón, "Cu(II) and Ni(II) complexes with new tridentate NNS thiosemicarbazones: Synthesis, characterisation, DNA interaction, and antibacterial activity", Bioinorg. Chem. Appl., vol. 2019, 2019. DOI: 10.1155/2019/3520837. DOI: https://doi.org/10.1155/2019/3520837
  • P. Caravan, "Strategies for increasing the sensitivity of gadolinium based MRI contrast agents", Chem. Soc. Rev., vol. 35, no. 6, p. 512, 2006. DOI: 10.1039/b510982. DOI: https://doi.org/10.1039/b510982p
  • L. J. Xu, G. T. Xu, and Z. N. Chen, "Recent advances in lanthanide luminescence with metal-organic chromophores as sensitizers", Coord. Chem. Rev., vol. 273–274, pp. 47–62, 2014. DOI: 10.1016/j.ccr.2013.11.021. DOI: https://doi.org/10.1016/j.ccr.2013.11.021
  • B. N. Siriwardena-Mahanama and M. J. Allen, "Strategies for optimizing water-exchange rates of lanthanide-based contrast agents for magnetic resonance imaging", Molecules, vol. 18, no. 8, pp. 9352–9381, 2013. DOI: 10.3390/molecules18089352. DOI: https://doi.org/10.3390/molecules18089352
  • M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, and H. J. Weinmann, "Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths", Invest. Radiol., vol. 40, no. 11, pp. 715–724, 2005. DOI: 10.1097/01.rli.0000184756.66360.d3. DOI: https://doi.org/10.1097/01.rli.0000184756.66360.d3
  • Y. Shen, F. L. Goerner, C. Snyder, J. N. Morelli, D. Hao, D. Hu, X. Li and V. M. Runge, "T1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7T", Invest. Radiol., vol. 50, no. 5, pp. 330–338, 2015. DOI: 10.1097/RLI.0000000000000132. DOI: https://doi.org/10.1097/RLI.0000000000000132
  • P. Caravan, D. Esteban-Gómez, A. Rodríguez-Rodríguez, and C. Platas-Iglesias, "Water exchange in lanthanide complexes for MRI applications. Lessons learned over the last 25 years", Dalt. Trans., vol. 48, no. 30, pp. 11161–11180, 2019. DOI: 10.1039/c9dt01948k. DOI: https://doi.org/10.1039/C9DT01948K
  • M. C. Heffern, L. M. Matosziuk, and T. J. Meade, "Lanthanide probes for bioresponsive imaging", Chem. Rev., vol. 114, no. 8, pp. 4496–4539, 2014. DOI: 10.1021/cr400477t. DOI: https://doi.org/10.1021/cr400477t
  • H. Scientific, "Assessing the Need and Identifying the Response", in A guide to recording Fluorecence Quantum Yileds, 2017, pp. 1–6.
  • S. Kagatikar and D. Sunil, "Aggregation-induced emission of azines: An up-to-date review", J. Mol. Liq., vol. 292, p. 111371, 2019. DOI: 10.1016/j.molliq.2019.111371. DOI: https://doi.org/10.1016/j.molliq.2019.111371
  • W. Tang, Y. Xiang, and A. Tong, "Salicylaldehyde Azines as Fluorophores of Aggregation-Induced Emission Enhancement Characteristics A series of salicylaldehyde azine derivatives were found to exhibit interesting aggregation-induced emission enhance- ment ( AIEE ) characteristics", J. Org. Chem., pp. 2163–2166, 2009. DOI: 10.1021/jo802631m. DOI: https://doi.org/10.1021/jo802631m
  • T. Sakurai, M. Kobayashi, H. Yoshida, and M. Shimizu, "Remarkable increase of fluorescence quantum efficiency by cyano substitution on an ESIPT molecule 2-(2-hydroxyphenyl) benzothiazole: A highly photoluminescent liquid crystal dopant", Crystals, vol. 11, no. 9, 2021. DOI: 10.3390/cryst11091105. DOI: https://doi.org/10.3390/cryst11091105
  • A. Foucault-Collet, K. A. Gogick, K. A. White, S. Villette, A. Pallier, G. Collet, C. Kieda, T. Li, S. J. Geib, N. L. Rosi and S. Petoud, "Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks", Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 43, pp. 17199–17204, 2013. DOI: 10.1073/pnas.1305910110. DOI: https://doi.org/10.1073/pnas.1305910110
  • Z. Qu, J. Shen, Q. Li, F. Xu, F. Wang, X. Zhang, C. Fan, "Near-IR emissive rare-earth nanoparticles for guided surgery", Theranostics, vol. 10, no. 6, pp. 2631–2644, 2020. DOI: 10.7150/thno.40808. DOI: https://doi.org/10.7150/thno.40808
  • «Ficha técnica Dotarem, Agencia española de medicamentos y productos sanitarios», pp. 5–24, 2016.
  • CECMED, «Ficha técnica Magnevist», vol. 52, no. 1. pp. 5–24, 2003.
  • J. Barnhart, N. Kuhnert, D. A. Bakan and R. Berk, "Biodistribution of GdCl3 and Gd-DTPA and their influence in rat tissues", Magn. Reson. Imaging, vol. 5, pp. 221–231, 1987. DOI: 10.1016/0730-725x(87)90023-3. DOI: https://doi.org/10.1016/0730-725X(87)90023-3
  • G. Castro, M. Regueiro-Figueroa, D. Esteban-Gûmez, R. Bastida, A. Macias, P. Perez-Lourido, C. Platas-Iglesias and L. Valencia, "Exceptionally Inert Lanthanide(III) PARACEST MRI Contrast Agents Based on an 18-Membered Macrocyclic Platform", Chem. - A Eur. J., vol. 21, no. 51, pp. 18662–18670, 2015. DOI: 10.1002/chem.201502937. DOI: https://doi.org/10.1002/chem.201502937
  • V. M. Runge, B. R. Carollo, C. R. Wolf, K. L. Nelson, and D. Y. Gelblum, "Gd DTPA: a review of clinical indications in central nervous system magnetic resonance imaging", RadioGraphics, vol. 9, no. 5, pp. 929–958, Sep. 1989. DOI: 10.1148/radiographics.9.5.2678298. DOI: https://doi.org/10.1148/radiographics.9.5.2678298
  • V. M. Runge, "Safety of approved MR contrast media for intravenous injection", J. Magn.
  • Reson. Imaging, vol. 12, no. 2, pp. 205–213, Aug. 2000. DOI: 10.1002/1522-2586(200008)12:2<205::AID-JMRI1>3.0.CO;2-P. DOI: https://doi.org/10.1002/1522-2586(200008)12:2<205::AID-JMRI1>3.0.CO;2-P
  • S. Rivera, H. Agudelo-Góngora, J. Oñate-Garzón, L. Florez-Elvira, A. Correa, P. Londoño, J. Londoño-Mosquera, A. Aragón-Muriel, D. Polo-Cerón, I. Ocampo-Ibáñez, "Antibacterial Activity of a Cationic Antimicrobial Molecular Targets", Molecules, vol. 25, p. 5035, 2020. DOI: 10.3390/molecules25215035. DOI: https://doi.org/10.3390/molecules25215035

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.