Mechanical properties and simulation of finite element firmness in Carica papaya L. Tainung F1 cultivated on the high Sinu (Cordoba-Colombia)

Main Article Content


Guillermo Arrázola
Fernando Villadiego
Armando Alvis


The objective of this research was to evaluate Tainung F1 papaya fruits in five degrees of ripeness, analyzing mechanical resistance and modeling behavior with finite element analysis to generate important postharvest and transport management data. Tainung F1 papaya fruits were evaluated in five degrees of ripeness by analyzing their mechanical strength. Firmness was determined by applying a uniaxial penetration test and mechanical properties with an axial compression test. The firmness modeling and simulation was done with Autodesk inventor professional 15.0 (ANSYS® Technology). The deformability modulus decreased with the increase in the degree of ripeness, from 1.81 MPa to 0.52 MPa for degree of ripeness 1 to degree of ripeness 5. The yield strength varied from 0.0073 MPa to 0.00239 MPa for the same range. The finite element simulation of the fruit firmness showed a negative correlation with the degree of ripeness.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.


Alonso, M., Y. Tornet, R. Ramos, and E. Farres. 2009. Evaluación de dos híbridos de papaya introducidos en cuba. Agron. Costarric. 33(2), 267-74.

Alvis, A., A. González, and G. Arrazola. 2015. Efecto del recubrimiento comestible en las propiedades de trozos de batata (Ipomoea batatas Lam) fritos por inmersión. Parte 2: Propiedades termofísicas y de transporte. Inf. Tecnol. 26(1), 103-116. Doi: 10.4067/S0718-07642015000100012

Alvis, A., M. Páez, and J. Lafont. 2009. Propiedades mecánicas y viscoelásticas del ñame (Dioscórea alata). Inf. Tecnol. 20(5), 75-81. Doi: 10.4067/S0718-07642009000500010

Babarinsa, F.A. and M.T. Ige. 2014. Strength parameters of packaged Roma tomatoes at break point under compressive loading. pp. 31-35. In: Proc. 5th International Conference on Food Engineering and Biotechnology. Vol. 65. IACSIT Press, Singapore.

Barreiro, P. and M. Ruiz. 1996. Propiedades mecánicas y calidad de frutos definiciones y medidas instrumentales. Frutic. Prof. 77, 48-51

Bonifácio, A., J. Mendes, M. Faragea, S. Barbosa, C. Barbosa, and A. Beaucour. 2019. Application of support vector machine and finite element method to predict the mechanical properties of concrete. Lat. Am. J. Solids struct. 16(7), e205. Doi: 10.1590/1679-78255297

Bourne, M. 2002. Food texture and viscosity. 2nd ed. Academic Press, New York, NY. Doi: 10.1016/B978-012119062-0/50001-2

Ciro, H., M. Montoya, and L. Milán. 2005. Caracterización de propiedades mecánicas del banano (Cavendish valery). Rev. Fac. Nac. Agron. Medellín 58(2), 2975-88.

Chandran, R. 2020. Finite element analysis in nanotechnology research. In: Finite element methods and their applications. IntechOpen, New Delhi.

Chen, P., M. Ruiz, F. Lu, and A.A. Kader. 1987. Study of impact and compression damage on Asian pears. Trans. ASAE 30(4), 1193-1197. Doi: 10.13031/2013.30543

Cherng, A., F. Ouyang, L. Blot, and R. Zwiggelaar. 2005. An estimation of firmness for solid ellipsoidal fruits. Biosyst. Eng. 91(2), 257-259. Doi: 10.1016/j.biosystemseng.2005.02.011

Errington, N., J. Mitchell, and J. Tucker. 1997. Changes in the force relaxation and compression responses of tomatoes during ripening: The effect of continual testing and polygalacturonase activity. Post-harvest Biol. Technol. 11, 141-147. Doi: 10.1016/S0925-5214(97)00020-3

Fernández, D., A. Ocampo, A. García, and A. Hernández. 2013. Análisis numérico de la resistencia mecánica del fruto de la guayaba en diversos estados de maduración. Científica 17(4), 171-80.

Fernández, D., A. Ocampo, A. García, and A. Hernández. 2014. Evaluación numérico-experimental de los esfuerzos principales en la corteza del fruto de la guayaba (Psidium guajava L) variedad enana roja. Rev. Cie. Téc. Agr. 23(1), 60-67.

García, M. 2010. Guía técnica del cultivo de papaya. In:; consulted: Octuber, 2020.

Gil, A. and D. Miranda. 2005. Morfología de la flor y de la semilla de papaya (Carica papaya L.) variedad Maradol e híbrido Tainung-1. Agron. Colomb. 23(2), 217-22.

Jiménez, J. 2002. El cultivo de la papaya Hawaiana. Editorial EARTH, San Jose. pp. 20-30.

Kabaş, Ö. and V. Vladut. 2015. Determination of drop test behavior of a sample peach using finite element method. Int. J. Food Prop. 18(11), 2584-2592. Doi: 10.1080/10942912.2014.994069

Márquez, C. 2009. Caracterización fisiológica, físico-química, geológica, nutraceúticas, estructural y sensorial de la guanábana (Annona muricata L. cv. Elita). PhD thesis. Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Medellin, Colombia.

Mayans, P., G. López, E. Romanchik, and L. Pérez. 2015. Propiedades elásticas del sistema fruto-pedicelo del mango relacionadas con la cosecha por vibración. Rev. Mex. Cienc. Agríc. 6(8), 1781- 1790. Doi: 10.29312/remexca.v6i1.747

Moaveni, S. 1999. Finite element analysis thory and application with ANSYS. Prentice-Hall, Upper Saddle River, NJ.

Mohsenin, N. 1970. Physical properties of plant and animal materials. Vol. I: Structure, physical caracteristics and mechanical. Gordon and Breach Science Publishers, New York, NY.

Mohsenin, N. 1972. Mechanical properties of fruits and vegetables. Review of a decade of research aplications and future needs. Trans. ASAE 10, 1064-1070. Doi: 10.13031/2013.38072

Namdari, B., G. Hossein, and M. Majid, 2020. Ripeness detection of orange fruit using experimental and finite element modal analysis. Sci. Hortic. 261, 108958. Doi: 10.1016/j.scienta.2019.108958

Negrín, L., R. Barros, A. Da Silva, A. Figueiredo, and N. Cárdenas. 2013. Comportamiento mecánico de dos variedades de mango (Mangifera indica) bajo compresión axial. Rev. Cienc. Téc. Agropec. 22(2), 11-15.

Osterloh, A., G. Ebert, W.H. Held, H. Schulz, and E. Urban. 1996. Lagerung von Obst und Südfrüchten. Verlag Ulmer, Stuttgart, Germany.

Pinzón, I., G. Fischer, and G. Corredor. 2007. Determinación de los estados de madurez del fruto de la gulupa (Passiflora edulis Sims). Agron. Colomb. 25(1), 83-95.

Pollak, N. and M. Peleg. 1980. Early indications of failure in large compressive deformation of solids foods. J. Food Sci. 45(4), 825-835. Doi: 10.1111/j.1365-2621.1980.tb07459.x

Ramírez, J. 2006. Introducción a la reología de los alimentos. ReCiTelA 6(1), 15-25.

Rangel-Montes de Oca, L., L.L. Monzón-Monraba, J. Garcia-Coronado, and A. García-Pereira. 2018. Mathematical techniques to infer post-harvest changes in the properties of agricultural products. Rev. Cie. Téc. Agr. 27(4).

Rojas, J., J. Montalvo, and M. Castro. 2013. Modelado tridimensional y análisis funcional de una cabria para la extracción del mineral. Dyna 80(181), 118-25.

Salazar, E. 2007. Resistencia de materiales básica para estudiantes de ingeniería. Universidad Nacional de Colombia, Manizales, Colombia.

Sanchez, N., G.F. Gutiérrez-López, and G. Caez-Ramírez. 2020. Correlation among PME activity, viscoelastic, and structural parameters for Carica papaya edible tissue along ripening. J. Food Sci. 85(2), 1805-1814. Doi: 10.1111/1750-3841.15130

Santamaría, F.B., E. Sauri, F. Espadas, R. Díaz, A. Larqué, and J.M. Santamaría. 2009. Postharvest ripening and maturity indices for maradol papaya. Interciencia 34(8), 583-588

Sanz, F. and J. Lafargue. 2002. Diseño industrial y desarrollo del producto. Thomson, Madrid.

Stroshine, R. 1999. Physical properties of agricultural materials and food products. Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN.

Uba, F., E.O. Esandoh, D. Zogho, and E.G. Anokye. 2020. Physical and mechanical properties of locally cultivated tomatoes in Sunyani, Ghana. Sci. Afr. 10, e00616. Doi: 10.1016/j.sciaf.2020.e00616

Vázquez, G., F. Chávez, F. Ariza, K. Yahia, Z. Salazar, V. Saucedo, and L. Colinas. 2003. Propiedades mecánicas de frutos de papaya Maradol roja bajo comprensión estática. Rev. Chapingo Ser. Hortic. 9(2), 341-351. Doi: 10.5154/r.rchsh.2000.12.088

Vázquez, G., E. Mata, H. Vázquez, R. Ariza, B. Santamaría, and I. Alia. 2013. Comportamiento mecánico de frutos de papaya bajo compresión axial. Rev. Mex. Cienc. Agríc. 4(8), 1223-1235. Doi: 10.29312/remexca.v4i8.1135

Villamizar, F. 2001. Manejo tecnológico postcosecha de frutas y hortalizas: Aspectos teóricos. Facultad de Ingeniería, Universidad Nacional de Colombia, Bogota.

Villaseñor, P., S. Chávez, and C. Saucedo. 2006. Comportamiento mecánico y fisiológico de frutos de melón (Cucumis melo L.) bajo compresión axial. Rev. Fitotec. Mex. 29(2), 157-162.

Wang, C., J. Pritchard, and C. Thomas. 2006. Investigation of the mechanics of single tomato fruit cells. J. Texture Stud. 37(5), 597-606. Doi: 10.1111/j.1745-4603.2006.00071.x

Wills, R., B. McGlasson, D. Graham, and D. Joyce. 1998. Postharvest: an introduction to the physiology and handling of fruit, vegetables and ornamentals. 2nd ed. CAB International, NewYork, NY.

Yam, J., C. Villaseñor, and E. Romantchik. 2009. Análisis de frutos de guayaba (Psidium guajava L.) bajo compresión y su relación con los procesos fisiológicos. Ing. Agric. Biosist. 1(1), 63-70. Doi: 10.5154/r.inagbi.2009.05.003

Zapata, L., A. Mallaret, and C. Quinteros. 2010. Estudio sobre cambios de la firmeza de bayas de arándanos durante su maduración. Cienc. Docencia Tecnol. (41), 159-71.

Zeebroeck, M., E. Tijskens, J. Dintwa, J. Kafashan, J. Loodts, and H. De Baerdemaeker. 2006. The discrete element method (DEM) to simulate fruit impact damage during transport and handling: Model building and validation of DEM to predict bruise damage of apples. Postharvest Biol. Technol. 41 (2), 85-91. Doi: 10.1016/j.postharvbio.2006.02.007

Zhang, P., R. Whistler, N. James, and B. Bruce. 2005. Hamaker banana starch: production, physicochemical properties, and digestibility. A review. Carbohydr. Polym. 59, 443-458. Doi: 10.1016/j.carbpol.2004.10.014

Zulkifli N., N. Hashim, H. Haizi, and M. Firda. 2020. Finite element modeling for fruit stress analysis-Review. Trends Food Sci. Technol. 97, 29-37. Doi: 10.1016/j.tifs.2019.12.029


Download data is not yet available.