Quantification of cyanogenic compounds, amygdalin, prunasin, and hydrocyanic acid in almonds (Prunus dulcis Miller) for industrial uses

Cuantificación de compuestos cianogénicos, amigdalina, prunasina y ácido cianhídrico en almendras (Prunus dulcis Miller) para usos industriales

Main Article Content

Guillermo Arrázola
Nuria Grane
Federico Dicenta

Abstract

The objective of this research was to quantify the concentration levels of the cyanogenic compounds, amygdalin and prunasin present in some varieties of almonds, considering their conversion to hydrocyanic acid, and their possible consumption in addition to other industrial uses, seeds of 29 commercial varieties were used of almond (Prunus dulcis Miller), evaluating its concentration and toxicity levels, taking into account the minimum degree of theoretical intake both for human consumption and for animals, through feed, this in terms of by-products. In addition, thermophysical properties thermophysical properties (thermal conductivity, thermal diffusivity, specific heat and density) and industrial uses were determined. The concentration was determined by chromatographic techniques (HPLC) and colorimetry (microdiffusion). The results obtained showed low levels of amygdalin from "not detected" to 375.40 mg/100 g of sample, depending on the sweet, slightly bitter and bitter varieties. The results indicate its possibility of commercialization, uses and applications in the food and pharmaceutical industry.

Keywords:

Downloads

Download data is not yet available.

Article Details

References (SEE)

Abd Aal, M.H.E., E.G. Gomoa, and H.A. Karara. 1987. Bitter almond, plum and mango kernels as sources of lipids. Fett/Lipid 89(8), 304-306. Doi: 10.1002/lipi.19870890803

Abraham, K., T. Buhrke, and A. Lampen. 2016. Bioavailability of cyanide after consumption of a single meal of foods containing high levels of cyanogenic glycosides: A crossover study in humans. Arch. Toxicol. 90, 559-574. Doi: 10.1007/s00204-015-1479-8

Alasalvar, C. and B.W. Bolling. 2015. Review of nut phytochemicals, fat‐soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 113(Suppl 2), 68-78. Doi: 10.1017/S0007114514003729

Andréo Filho, N., L. Pessole, M. Yang, M. Issa, and H. Ferraz. 2007. Aplicación de recubrimiento gastro-resistente en núcleos comprimidos conteniendo didanosina utilizando diferentes equipos: Bombo grageador convencional, tambor perforado y lecho fluido. Lat. Am. J. Pharm. 26(5), 669-676.

Ansell, M. and F.A. Lewis. 1970. A review of cyanide concentrations found in human organs. A survey of literature concerning cyanide metabolism, 'normal', non-fatal, and fatal body cyanide levels. J. Forensic. Med. 17(4), 148-155.

AOAC, Association of Official Agricultural Chemists. 1990. Método 930.15 – determinación extracto etéreo; método 920.39 – determinación cenizas; método 942.04 - determinación fibra cruda; método 962.09 – determinación proteína cruda; método 955.04 – determinación de grasa. Washington, DC.

Armstrong, H.E., E.F. Armstrong, and E. Horton. 1908. Studies on enzyme action. XII.-The enzymes of emulsin. Proc. Royal Soc. B: Biol. Sci. 80, (540), 321-331. Doi: 10.1098/rspb.1908.0031

Arrázola, G., F. Dicenta, and N. Grané. 2015. Evolution of the amygdalin and prunasin content during the development of almond (Prunus dulcis Miller). Rev. Fac. Agron. (LUZ) 32, 63-81.

Arrázola, G., N. Grane, M.L. Martin, and F. Dicenta. 2013. Determination of cyanogenic compound amygdalin and prunasin in almond kernels (Prunus dulcis L.) by using liquid chromatography. Rev. Colomb. Quim. 42(1), 13-21.

Bainbridge, M. 1996. In methods for assessing quality characteristics of non-grain starch staples. Part 2: Field methods. Natural resources Institute, Chatham, UK. pp. 27-29.

Ballhorn, D.J. 2011. Cyanogenic glycosides in nuts and seeds. pp. 129-136. In: Preedy, V.R., R.R. Watson, and V.B. Patel (eds.). Nuts and seeds in health and disease prevention. Academic Press, London. Doi: 10.1016/B978-0-12-375688-6.10014-3

Bark, L.S. and H.G. Higson. 1963. A review of the methods available for the detection and deternination of small amount of cyanide. Analyst 1051, 751-760. Doi: 10.1039/an9638800751

Bernat, N., M. Cháfer, A. Chiralt, and C. González-Martínez. 2015. Development of a non‐dairy probiotic fermented product based on almond milk and inulin. Food Sci. Technol. Int. 21(6), 440-453. Doi: 10.1177/1082013214543705

Blum, D. 2010. The Poisoner’s handbook: Murder and the birth of forensic medicine in Jazz Age New York. Penguin Press, New york, NY.

Borron, S.W. and F.J. Baud. 2012. Antidotes for acute cyanide poisoning. Curr. Pharm. Biotechnol. 13(10), 1940-1948. Doi: 10.2174/138920112802273182

Briggs, D.R. and D. Yuen. 1978. Determination of cyanide in apricot kernels. Proc. Nutr. Soc. Austral. 3(1), 103-104.

Casanova, P., P.C. Corrêa, K. Solís, and J.C.C. Campos. 2013. Thermal properties of Conilon coffee fruits. IOSR J. Eng. 3(11), 29-35. Doi: 10.9790/3021-031152935

Chaouali, N., I. Gana, A. Dorra, F. Khelifi, A. Nouioui, W. Masri, I. Belwaer H. Ghorbel, and A. Hedhili. 2013. Potential toxic levels of cyanide in almonds (Prunus amygdalus), apricot kernels (Prunus armeniaca), and almond syrup. Int. Sch. Res. Notices 2013, 610648. Doi: 10.1155/2013/610648

Choi, Y. and M.R. Okos. 1986. Effects of temperature and composition on the thermal properties of foods. pp. 93-101. In: Maguer, L.M. and P. Jelen (Eds.), Food engineering and process applications. Vol. 1: Transport phenomena. Elsevier, New York, NY.

Conn, E.E. 1980. Cyanogenic compound. Ann. Rev. Plant Physiol. 31, 433-451. Doi: 10.1146/annurev.pp.31.060180.002245

Cunha, E.S., G.P.A. Lima, J.H.O. Sales, and E.A. Oliveira. 2021. Determinação de propriedades termofísicas de amêndoas secas de cupuaçu (Theobroma grandiflorum). J. Eng. Exact Sci. 7(2), 11955-01. Doi: 10.18540/jcecvl7iss2pp11955-01-12e

Davis, R.H. 1991. Cyanogens. pp. 202-225. In: Felix D'Mello, J.P., C.M. Duffus, and J.H. Duffus (eds.). Toxic substances in crop plants. Woodhead Publishing, Cambridge, UK. Doi: 10.1533/9781845698454.202

Delgado-Tobón, A.E., W.A. Aperador-Chaparro, and R.G. García-Cáceres. 2018. Evaluation of the lubricating power of sweet almond oil without additives. DYNA 85(205), 179-183. Doi: 10.15446/dyna.v85n205.68033

Dicenta, F. and J.E. García. 1993. Inheritance of the kernel flavour in almond. Heredity 70, 308-312. Doi: 10.1038/hdy.1993.44

Dicenta, F, P. Martínez-Gómez, N. Grané, M.L. Martín, A. León, J.A. Cánovas, and V. Berenguer. 2002. Relationship between cyanogenic compounds in kernels, leaves, and roots of sweet and bitter kernelled almonds. J. Agric. Food Chem. 50(7), 2149-2152. Doi: 10.1021/jf0113070

Du, L., M. Bokanga, B.L. Möller, and B.A. Halkier. 1995. The biosynthesis of cyanogenic glucosides in roots cassava. Phytochemistry 39(2), 323-326. Doi: 10.1016/0031-9422(94)00878-W

EFSA, European Food Safety Authority. 2007. Opinion of the scientific panel on contaminants in the food chain [CONTAM] related to cyanogenic compounds as undesirable substances in animal feed. EFSA J. 434. Doi: 10.2903/j.efsa.2007.434

Egan, S.V., H.H. Yeoh, and J.H. Bradbury. 1998. Simple picrate paper kit for determination of the cyanogenic potential of cassava flour. J. Sci. Food Agric. 76(1), 39-48. Doi: 10.1002/(SICI)1097-0010(199801)76:1<39::AID-JSFA947>3.0.CO;2-M

Egekeze, J.O. and F.W. Oehme. 1980. Cyanides and their toxicity: A literature review. Vet. Q. 2(2), 104-114. Doi: 10.1080/01652176.1980.9693766

EPA. 1990. Summary review of health effects associated with hydrogen cyanide. Health issue assessment environmental criteria and assessment office. EPA/600/8-90/002F. Office of Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC.

Evans-Johnson, J.A., J.A. Garlick, E.J. Johnson, X.D. Wang, and C.Y. Oliver Chen. 2013. A pilot study of the photoprotective effect of almond phytochemicals in a 3D human skin equivalent. J. Photochem. Photobiol. 126, 17-25. Doi: 10.1016/j.jphotobiol.2013.07.006

FAO, Food and Agricultural Organization; WHO, World Health Organization. 2012. Safety evaluation of certain food additives and contaminants: prepared by the seventy-fourth meeting of the joint FAO/WHO expert committee on food additives. WHO Food Additives Series 65, Genova.

Fernández-Cuesta, A., M.R. Aguirre-González, M.V. Ruiz-Méndez, and L. Velasco. 2012. Validation of a method for the analysis of phytosterols in sunflower seeds. Eur. J. Lipid Sci. Technol. 114(3), 325-331. Doi: 10.1002/ejlt.201100138

Ferreira, S.R. and A.R.S, Costa. 2009. Parámetros de transferencia de materia en el secado de frutas. Información Tecnológica 20(2), 89-104.

Forcada, C., L. Velasco, R. Socias i Company, and A. Fernández i Marti. 2015. Association mapping for kernel phytosterol content in almond. Front. Plant Sci. 6, 530. Doi: 10.3389/fpls.2015.00530

Frehner, M., M. Scalet, and E.E. Conn. 1990. Pattern of the cyanide-potential in developing fruits: Implications for Plants Accumulating Cyanogenic Monoglucosides (Phaseolus lunatus) or Cyanogenic Diglucosides in Their Seeds (Linum usitatissimum, Prunus amygdalus). Plant. Physiol. 94(1), 28-34. Doi: 10.1104/pp.94.1.28

García-Pascual, P., P. Mateos, M. Carbonell, and D.M. Salazar. 2003. Influence of storage conditions on the quality of shelled and roasted almonds. Biosyst. Eng. 84, 201-209. Doi: 10.1016/S1537-5110(02)00262-3

Garrido, I., M. Monagas, C. Gómez‐Cordoves and B. Bartolomé. 2008. Polyphenols and antioxidant properties of almond skins: influence of industrial processing. J. Food Sci. 73(2), 106-115. Doi: 10.1111/j.1750-3841.2007.00637.x

Gleadow, R.M. and B.L. Møller. 2014. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu. Rev. Plant Biol. 65, 155-185. Doi: 10.1146/annurev-arplant-050213-040027

Grasselly, C. and P. Crossa-Raynaud. 1980. L´amandier, techniques agricoles et productions méditerraneennes. G. P. Maisonneuve & Larose, Paris.

Halkier, B.A. and B.L. Møller. 1989. Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Physiol. 90(4), 1552-1559. Doi: 10.1104/pp.90.4.1552

Haque, M.R. and J.H. Bradbury. 2002. Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chem. 77(1), 107-114. Doi: 10.1016/S0308-8146(01)00313-2

Hayes, D., M. Angove, J. Tucci, and C. Dennis. 2016. Walnuts (Juglans regia) Chemical Composition and Research in Human Health. Crit. Rev. Food Sci. Nutr. 56(8), 1231-1241. Doi: 10.1080/10408398.2012.760516

Heppner, M.J. 1923. The factor for bitterness in the sweet almond. Genetics 8, 390-392. Doi: 10.1093/genetics/8.4.390

Heppner, M.J. 1926. Further evidence on the factor for bitterness in the sweet almond. Genetics 11, 605-606. Doi: 10.1093/genetics/11.6.605

Ibar, L. 1985. Cultivo moderno del almendro. Editores Aedos, Barcelona, Spain.

Jensen, N., M. Zagrobelny, K. Hjernø, C.E. Olsen, J. Houghton-Larsen, J. Borch, B.L. Møller, and S. Bak. 2011. Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nat. Commun. 2, 273. Doi: 10.1038/ncomms1271

Kobayashi, K. and K. Hisamatsu. 1978. Coating agent for roasted nut and grins. Patent 77 38, 107 Chem. Abstr. 88, 361-362.

Lucas, B. and A. Sotelo. 1984. Simplified test for the quantitation of cyanogenic glucosides in wild and cultivated seeds. Nutr. Rep. Int. 29, 711-719.

Mandalari G., A. Tomaino, T. Arcorasi, and M. Martorana. 2010. Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). J. Food Compos. Anal. 23(2), 166-174

Mandenius, C., L. Büelow, and B. Danielsson. 1983. Determination of amygdalin and cyanide in industrial food samples using enzymic methods. Acta Chem. Scand. 37(8), 739-742. Doi: 10.3891/acta.chem.scand.37b-0739

Martins, I.M., Q. Chen, and C.Y. Oliver Chen. 2016. Emerging functional foods derived from almonds. In: Ferreira, I.C.F.R., P. Morales and L. Barros (eds.). Wild plants, mushrooms and nuts: Functional Food Properties and Applications. John Wiley & Sons, Chichester, UK.

McCarty, C.D., J.W. Leslie, and H.B. Frost. 1952. Bitterness of kernels of almond x peach hybrids and their parents. Proc. Am. Soc. Hort. Sci. 59, 254-258.

Møller, B.L. and D.S. Seigler. 1991. Biosynthesis of cyanogenic glycosides, cyanolipids and related compounds. 563-609. In: Singh, B.K. (ed.). Plant amino acids: Biochemistry and biotechnology. Marcel Dekker, New York, NY.

Monagas, M., I. Garrido, R. Lebron-Aguilar, B. Bartolomé, and C. Gómez-Cordovés. 2007. Almond (Prunus dulcis (Mill.) D.A. Webb) skins as a potential source of bioactive polyphenols. J. Agric. Food Chem. 55(21), 8498-8507. Doi: 10.1021/jf071780z

ICONTEC, Instituto Colombiano de Normas Técnicas y Certificación. 2002. Norma Tecnica Colombiana, NTC 336, grasas y aceites animales y vegetales. Método de la determinación de la densidad (masa por volumen convencional). Bogota.

Oliveira, I., A.S. Meyer, S. Afonso, A. Sequeira, A. Vilela, P. Goufo, H. Trindade, and B. Gonçalves. 2020. Effects of different processing treatments on almond (Prunus dulcis) bioactive compounds, antioxidant activities, fatty acids, and sensorial characteristics. Plants (Basel) 9(11), 1627. Doi: 10.3390/plants9111627

Onabolu, A.O., O.S.A. Oluwole, H. Rosling, and M. Bokanga. 2002. Processing factors affecting the level of residual cyanohydrins in gari. J. Sci. Food Agric. 82(9), 966‐969. Doi: 10.1002/jsfa.1131

Polesello, A. and A. Rizzolo. 1989. Caratteristiche nutrizionali e utilizzazione industriale delle mandorle. Frutticoltura 51(4), 43-50.

Poulton, J. and C.P. Li. 1994. Tissue level compartmentation of (R)-amygdalin and amygdalin hydrolase prevents large-scale cyanogen in undamaged Prunus seeds. Plant Physiol. 104, 29-35. Doi: 10.1104/pp.104.1.29

Rodushkin, I, E. Engström, D. Sörlin, and D. Baxter. 2008. Levels of inorganic constituents in raw nuts and seeds on the Swedish market. Sci. Total Environ. 392(2-3), 290-304. Doi: 10.1016/j.scitotenv.2007.11.024

Sánchez-Pérez, R., K. Jørgensen, C.E. Olsen, F. Dicenta, and B. Møller. 2008. Bitterness in almonds. Plant Physiol. 146(3), 1040-1052. Doi: 10.1104/pp.107.112979

Sánchez-Pérez, R., S. Pavan, R. Mazzeo, C. Moldovan, R.A. Cigliano, J. Del Cueto, F. Ricciardi, C. Lotti, L. Ricciardi, F. Dicenta, R.L. López-Marques, and B.L. Møller. 2019. Mutation of a bHLH transcription factor allowed almond domestication. Science 364(6445), 1095-1098. Doi: 10.1126/science.aav8197

Sibbesen, O., B. Koch, B.A. Halkier, and B.L. Møller. 1994. Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Proc. Natl. Acad. Sci. USA 91(21), 9740-9744. Doi: 10.1073/pnas.91.21.9740

Thodberg, S., J. Del Cueto, R. Mazzeo, S. Pavan, C. Lotti, F. Dicenta, E.H.J. Neilson, B.L. Møller, and R. Sánchez-Pérez. 2018. Elucidation of the amygdalin pathway reveals the metabolic basis of bitter and sweet almonds (Prunus dulcis). Plant Physiol. 178(3), 1096-1111. Doi: 10.1104/pp.18.00922

Tuncel, G., M.J.R. Nout, and L. Brimer. 1995. The effects of grinding, soaking and cooking on the degradation of amygdalin of bitter apricot seeds. Food Chem. 53(4), 447‐451. Doi: 10.1016/0308-8146(95)99841-M

Vargas, F.J., M.A. Romero, and I. Batlle. 2001. Kernel taste inheritance in almond. Options Méditerr. 56, 129-134..

WHO, World Health Organization. 2004. Hydrogen cyanide and cyanides: Human health aspects. Concise International Chemical Assessment Document 61. Geneva.

Zacheo, G., M.S. Cappello, A. Gallo, A. Santino, and A.R. Cappello. 2000. Changes associated with post-harvest ageing in almond seeds. LWT Food Sci. Technol. 33(6), 415-423. Doi: 10.1006/fstl.2000.0679

Citado por: