Hyperspectral response of cape gooseberry (Physalis peruviana L.) plants inoculated with Fusarium oxysporum f. sp. physali for vascular wilt detection

Main Article Content

Autores

Cristhian Giraldo-Betancourt https://orcid.org/0000-0002-6917-4979
Edisson Andrés Velandia-Sánchez https://orcid.org/0000-0002-4324-043X
Gerhard Fischer https://orcid.org/0000-0001-8101-0507
Sandra Gómez-Caro https://orcid.org/0000-0002-6670-0275
Luís Joel Martínez https://orcid.org/0000-0001-9010-9189

Abstract

This study used greenhouse conditions to determine the hyperspectral responses of cape gooseberry (Physalis peruviana L.) plants inoculated with different Fusarium oxysporum f. sp. physali densities because the causal agent of vascular wilt generates great economic losses for farmers. A completely randomized design with four replicates was established. The evaluated treatments were inoculum densities 0.0, 1.0·103 and 1.0·106 conidia/mL of the pathogen. The inoculation was done with immersion of roots in conidia suspensions. The spectral response was directly measured on the plant leaves with a spectroradiometer. Non-invasive detection in the P. peruviana - F. oxysporum pathosystem with reflectance values was used with different spectral indices related to the visible and Red Edge, which were calculated and correlated with the disease variables. The treatments showed significant differences in the visible spectrum starting 14 days after inoculation with higher reflectance values. The chlorophyll index at the red edge (ChRE), the modified chlorophyll absorption index (MCARI), the simple ratio index (SR) and the Zarco & Miller index (ZM) showed highly significant correlations with the area under the disease progress curve for leaves (AUDPCL), leaf area and fresh weight of the aerial part of the plants. This study showed the potential of spectral patterns for the detection and study of Fusarium wilt in P. peruviana.

Keywords:

Article Details

Licence

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.

References

Agronet. 2020. Estadísticas - uchuva. In: http://www.agronet.gov.co; consulted: January, 2020.

Ahmadi, P., F.M. Muharam, K. Ahmad, S. Mansor, and I.A. Seman. 2017. Early detection of ganoderma basal stem rot of oil palms using artificial neural network spectral analysis. Plant Dis. 101(6), 1009-1016. Doi: 10.1094/PDIS-12-16-1699-RE

Álvarez-Herrera, J., H. González, and G. Fischer. 2019. Water potential in cape gooseberry (Physalis peruviana L.) plants subjected to different irrigation treatments and doses of calcium. Agron. Colomb. 37(3), 274-282. Doi: 10.15446/agron.colomb.v37n3.79935

Alves, D.P., R.S. Tomaz, B.S. Laurindo, R.D.F. Laurindo, C.D. Cruz, C. Nick, and D.J.H.D. Silva. 2017. Artificial neural network for prediction of the area under the disease progress curve of tomato late blight. Sci. Agric. 74(1), 51-59. Doi: 10.1590/1678-992x-2015-0309

ASD Inc. 2012. FieldSpec 4 user guide. ASD document 6000979. Malvern Panalytical, Malvern, UK.

Bauriegel, E., A. Giebel, and W. Herppich. 2011. Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of Fusarium culmorum on the photosynthetic integrity of infected wheat ears. Sensors 11, 3765-3779. Doi: 10.3390/s110403765

Bauriegel, E. and W. Herppich. 2014. Hyperspectral and chlorophyll fluorescence imaging for early detection of plant diseases, with special reference to Fusarium spec. infections on wheat. Agriculture 4, 32-57. Doi: 10.3390/agriculture4010032

Brizuela-Amador, B., G. Alcántar-González, P. Sánchez-García, Y. Pea-Kalra, J. Crumbaugh, C. Olive, and R. Maldonado-Torres. 2007. Establecimiento de índices espectrales en el diagnóstico nutrimental de nitrógeno en maíz. Agrociencia 41, 827-835.

Calderón, R., J.A. Navas-Cortés, and P.J Zarco-Tejada. 2015. Early detection and quantification of Verticillium wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sens. 7(5), 5584-5610. Doi: 10.3390/rs70505584

Caligiore, P.F., J.G. Valdez, R.J. Piccolo, and C.R. Galmarini. 2014. Influence of Fusarium spp. isolate and inoculum density on resistance screening tests in onion. Trop. Plant Pathol. 39(1), 019-027. Doi: 10.1590/S1982-56762014005000005

Campbell, C.L. and L.V. Madden. 1990. Introduction to plant disease epidemiology. Wiley-Interscience, New York, NY.

Cháves-Gómez J.L., L.M. Becerra-Mutis, C.C. Chávez-Arias, H. Restrepo-Díaz, and S. Gómez-Caro. 2020a. Screening of different Physalis genotypes as potential rootstocks or parents against vascular wilt using physiological markers. Front. Plant Sci. 11, 806. Doi: 10.3389/fpls.2020.00806

Chaves-Gómez, J.L., A.M. Cotes-Prado, S. Gómez-Caro, and H. Restrepo-Díaz. 2020b. Physiological response of cape gooseberry seedlings to two organic additives and their mixture under inoculation with Fusarium oxysporum f. sp. physali. HortScience 55(1), 121-132. Doi: 10.21273/HORTSCI14550-19

Chávez-Arias, C.C., S. Gómez-Caro, and H. Restrepo-Díaz. 2019. Physiological, biochemical and chlorophyll fluorescence parameters of Physalis peruviana L. seedlings exposed to different short-term waterlogging periods and Fusarium wilt infection. Agron. 9, 213. Doi: 10.3390/agronomy9050213

Cruz, M., L. Hoyos-Carvajal, and L.M. Melgarejo. 2012. Respuesta fisiológica de la Gulupa (Passiflora edulis Sims) frente al ataque por Fusarium spp. pp. 91-113. In: Melgarejo, L.M. (ed.). Ecofisiologia del cultivo de la Gulupa (Passiflora edulis Sims). Universidad Nacional de Colombia, Bogota.

Enciso-Rodríguez, F.E., C. González, E.A. Rodríguez, C.E. López, D. Landsman, L.S. Barrero, and L. Mariño-Ramírez. 2013. Identification of immunity related genes to study the Physalis peruviana - Fusarium oxysporum pathosystem. PLoS ONE 8(7), e68500. Doi: 10.1371/journal.pone.0068500

Fischer, G., P.J. Almanza-Merchán, and D. Miranda. 2014. Importancia y cultivo de la uchuva (Physalis peruviana L .). Rev. Bras. Frutic. 36(1), 1-15. Doi: 10.1590/0100-2945-441/13

Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortic. 14(1). Doi: 10.17584/rcch.2020v14i1.10893

Gardner, D.E. 1989. Pathogenicity of Fusarium oxysporum f. sp. passiflorae to banana poka and other Passiflora spp. in Hawaii. Plant Dis. 73(6), 476-478. Doi: 10.1094/PD-73-0476

Ghaemi, A., A. Rahimi, and Z. Banihashemi. 2011. Effects of water stress and Fusarium oxysporum f. sp. lycoperseci on growth (leaf area, plant height, shoot dry matter) and shoot nitrogen content of tomatoes under greenhouse conditions. Iran. Agric. Res. 29, 51-62.

Gitelson, A. and M.N. Merzlyak. 1997. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 18(12), 2691-2697. Doi: 10.1080/014311697217558

Gitelson, A.A., M.N. Merzlyak, and H.K. Lichtenthaler. 1996. Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. J. Plant Physiol. 148(3-4), 501-508. Doi: 10.1016/S0176-1617(96)80285-9

Gullino, M.L., M.L. Daughtrey, A. Garibaldi, and W.H. Elmer. 2015. Fusarium wilts of ornamental crops and their management. Crop Prot. 73, 50-59. Doi: 10.1016/j.cropro.2015.01.003

Haglund, W.A. 1989. A rapid method for inoculating pea seedlings with Fusarium oxysporum f. sp. pisi. Plant Dis. 73(6), 457-458. Doi: 10.1094/PD-73-0457

Hao, J.J., M.E. Yang, and R.M. Davis. 2009. Effect of soil inoculum density of Fusarium oxysporum f. sp. vasinfectum race 4 on disease development in cotton. Plant Dis. 93, 1324-1328. Doi: 10.1094/PDIS-93-12-1324

Inoue, I., F. Namiki, and T. Tsuge. 2002. Plant colonization by the vascular wilt fungus Fusarium oxysporum Requires FOW1, a gene encoding a mitochondrial protein. Plant Cell 14, 1869-1883. Doi: 10.1105/tpc.002576

Kang, Z. and H. Buchenauer. 2000. Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycol. Res. 104(9), 1083-1093. Doi: 10.1017/S0953756200002495

Karadağ, K., M.E. Tenekeci., R. Taşaltın, and A. Bilgili. 2019. Detection of pepper fusarium disease using machine learning algorithms based on spectral reflectance. Sustain. Comput. Infor. Syst. 100299. Doi: 10.1016/j.suscom.2019.01.001

Katsoulas, N., A. Elvanidi, K.P. Ferentinos, M. Kacira, T. Bartzanas, and C. Kittas. 2016. Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review. Biosyst. Eng. 151, 374-398. Doi: 10.1016/j.biosystemseng.2016.10.003

Lagos, J.A., R. Campos, and C. Fuentes. 2007. Efecto del herbicida Atrazina sobre la población de bacterias en un suelo del municipio de Saldaña, Tolima. Colomb. For. 10(20), 161-179. Doi: 10.14483/udistrital.jour.colomb.for.2007.1.a09

Lecomte, C., C. Alabouvette, V.E. del-Hermann, F. Robert, and C. Steinberg. 2016. Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. Biol. Contr. 101, 17-30. Doi: 10.1016/j.biocontrol.2016.06.004

Leslie, J.F. and B.A. Summerell. 2006. The fusarium laboratory manual. Wiley-Blackwell, Hoboken, NJ. Doi: 10.1002/9780470278376

Lichtenthaler, H.K., A. Gitelson, and M. Lang. 1996. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. J. Plant Physiol. 148, 483-493. Doi: 10.1016/S0176-1617(96)80283-5

Lowe, A., N. Harrison, and A.P. French. 2017. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Meth. 13(1), 1-12. Doi: 10.1186/s13007-017-0233-z

Lu, J., R. Ehsani, Y. Shi, J. Abdulridha, A.I. de Castro, and Y. Xu. 2017. Field detection of anthracnose crown rot in strawberry using spectroscopy technology. Comp. Electron. Agric. 135, 289-299. Doi: 10.1016/j.compag.2017.01.017

MacDonald, S.L., M. Staid, M. Staid, and M.L. Cooper. 2016. Remote hyperspectral imaging of grapevine leafroll-associated virus 3 in cabernet sauvignon vineyards. Comp. Electron. Agric. 130, 109-117. Doi: 10.1016/j.compag.2016.10.003

Mahlein, A.K., T. Rumpf, P. Welke, H.W. Dehne, L. Plümer, U. Steiner, and E.C. Oerke. 2013. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 128, 21-30. Doi: 10.1016/j.rse.2012.09.019

Mahlein, A.K., U. Steiner, H.-W. Dehne, and E.-C. Oerke. 2010. Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agric. 11, 413-431. Doi: 10.1007/s11119-010-9180-7

Marín-Ortiz, J.C., N. Gutierrez-Toro, V. Botero-Fernández, and L.M. Hoyos-Carvajal. 2020. Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi J. Biol. Sci. 27(1), 88-99. Doi: 10.1016/j.sjbs.2019.05.007

Martínez, L.J. 2017. Relationship between crop nutritional status, spectral measurements and Sentinel 2 images. Agron. Colomb. 35(2), 205-215. Doi: 10.15446/agron.colomb.v35n2.62875

Martínez, L.J. and A. Ramos. 2015. Estimation of chlorophyll concentration in maize using spectral reflectance. pp. 65-71. In: Proc. 36th, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-7/W3. ISPRS, Berlin. Doi: 10.5194/isprsarchives-XL-7-W3-65-2015

McGovern, R.J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 73, 78-92. Doi: 10.1016/j.cropro.2015.02.021

Mistele, B. and U. Schmidhalter. 2007. Spectral measurements of the total aerial N and biomass dry weight in maize using a quadrilateral-view optic. Field Crops Res. 106(1), 94-103. Doi: 10.1016/j.fcr.2007.11.002

Naidu, R.A., E.M. Perry, F.J. Pierce, and T. Mekuria. 2009. The potential of spectral reflectance technique for the detection of grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Comp. Electron. Agric. 66(1), 38-45. Doi: 10.1016/j.compag.2008.11.007

Nutter, F.W. and R.E. Gaunt. 1996. Recent developments in methods for assessing disease losses in forage/pasture crops. Pasture Forage Crop Pathol. Jan. 1996, 93-118. Doi: 10.2134/1996.pastureforagecroppathol.c6

Ownley, B.H. and R.N. Trigiano (eds.). 2016. Plant pathology: Concepts and laboratory exercises. CRC Press, Boca Raton, FL.

Peng, Y. and A.A. Gitelson. 2011. Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric. For. Meteor. 151(9), 1267-1276. Doi: 10.1016/j.agrformet.2011.05.005

Prabhakar, M., Y.G. Prasad, S. Desai, M. Thirupathi, K. Gopika, G.R. Rao, and B. Venkateswarlu. 2013. Hyperspectral remote sensing of yellow mosaic severity and associated pigment losses in Vigna mungo using multinomial logistic regression models. Crop Prot. 45, 132-140. Doi: 10.1016/j.cropro.2012.12.003

Qin, J., T.F. Burks, M.A. Ritenour, and W.G. Bonn. 2009. Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. J. Food Eng. 93(2), 183-191. Doi: 10.1016/j.jfoodeng.2009.01.014

Robles Carrión, A., R. Gómez Criollo, F. Marcas Rojas, A. Sánchez Rodríguez, and R. Torres-Gutiérrez. 2014. Study of pathogenicity of Fusarium spp. isolates, associated with vascular wilt Babaco in Loja - Ecuador. Centro Biotecnol. 3(1), 61-72.

Sanogo, S., O.I. El-Sebai, and R. Sanderson. 2008. Severity of verticillium wilt, plant growth, and spectral reflectance indices of chile pepper under periodic flooding and no-flooding conditions. HortScience 43(2), 414-419. Doi: 10.21273/HORTSCI.43.2.414

Shabani, F., L. Kumar, and A. Esmaeili. 2014. Future distributions of Fusarium oxysporum f. spp. in European, Middle Eastern and North African agricultural regions under climate change. Agric. Ecosyst. Environ. 197, 96-105. Doi: 10.1016/j.agee.2014.08.005

Shafri, H.Z.M., M.I. Anuar, I.A. Seman, and N.M. Noor. 2011. Spectral discrimination of healthy and ganoderma-infected oil palms from hyperspectral data. Int. J. Remote Sensing 32(22), 7111-7129. Doi: 10.1080/01431161.2010.519003

Sharma, A., N.K. Sharma, A. Srivastava, A. Kataria, S. Dubey, S. Sharma, and B. Kundu. 2018. Clove and lemongrass oil based non-ionic nanoemulsion for suppressing the growth of plant pathogenic Fusarium oxysporum f.sp. lycopersici. Ind. Crops Prod. 123, 353-362. Doi: 10.1016/j.indcrop.2018.06.077

Simbaqueba, J., A.M. Catanzariti, C. González, and D.A. Jones. 2018. Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape-gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum. Mol. Plant Pathol. 19, 2302-2318. Doi: 10.1111/mpp.12700

Southwood, M.J., A. Viljoen, and A. McLeod. 2015. Inoculum sources of Fusarium oxysporum f.sp. cepae on onion in the Western Cape Province of South Africa. Crop Prot. 75, 88-95. Doi: 10.1016/j.cropro.2015.05.014

Sterling, A. and L.M. Melgarejo. 2020. Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. Eur. J. Plant Pathol. 156(4), 1063-1076. Doi: 10.1007/s10658-020-01961-7

Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2015. Plant physiology and development. 6th ed. Sinauer Associates, Sunderland, MA.

Thenkabail, P.S., R.B. Smith, and E. De Pauw. 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 71(2), 158-182. Doi: 10.1016/S0034-4257(99)00067-X

Villarreal-Navarrete, A., G. Fischer, L.M. Melgarejo, G. Correa, and L. Hoyos-Carvajal. 2017. Growth response of the cape gooseberry (Physalis peruviana L) to waterlogging stress and Fusarium oxysporum infection. Acta Hortic. 1178, 161-168. Doi: 10.17660/ActaHortic.2017.1178.28

Wu, C., Z. Niu, Q. Tang, and W. Huang. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteor. 148(8-9), 1230-1241. Doi: 10.1016/j.agrformet.2008.03.005

Zarco-Tejada, P.J., A. Berjón, R. López-Lozano, J.R. Miller, P. Martín, V. Cachorro, M.R. González, and A. De Frutos. 2005. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 99(3), 271-287. Doi: 10.1016/j.rse.2005.09.002

Zarco-Tejada, P.J., J.R. Miller, A. Morales, A. Berjón, and J. Agüera. 2004. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens. Environ. 90(4), 463-476. Doi: 10.1016/j.rse.2004.01.017

Zhang, Y., L. Guanter, J. Joiner, L. Song, and K. Guan. 2018b. Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data. Remote Sens. Environ. 210, 362-374. Doi: 10.1016/j.rse.2018.03.031

Zhang, Z., W. Ren, J. Wang, W. Chen, C. Sang, and C. Chen. 2018a. Resistance risk assessment of Fusarium oxysporum f. sp. melonis against phenamacril, a myosin inhibitor. Pesticide Biochem. Physiol. 147(Sept. 2017), 127-132. Doi: 10.1016/j.pestbp.2017.09.014

Zhao, J., L. Huang, W. Huang, D. Zhang, L. Yuan, J. Zhang, and D. Liang. 2014. Hyperspectral measurements of severity of stripe rust on individual wheat leaves. Eur. J. Plant Pathol. 139, 407-417. Doi: 10.1007/s10658-014-0397-6

Zhao, D., J.L. Li, and J.G. Qi. 2005. Identification of red and NIR spectral regions and vegetative indices for discrimination of cotton nitrogen stress and growth stage. Comp. Electron. Agric. 48(2), 155-169. Doi: 10.1016/j.compag.2005.03.003

Downloads

Download data is not yet available.