Calculation of the thermal units for 13 codes of the BBCH scale of 12 progenies of quinoa in the growing conditions of the Brazilian savanna

Cálculo del tiempo térmico para 13 códigos de la escala BBCH de 12 progenies de quinua en las condiciones de crecimiento de la Sabana Brasileña

Main Article Content

Wilson Anchico-Jojoa
José Ricardo Peixoto
Carlos Roberto Spehar
Michelle Souza Vilela

Abstract

The introduction of quinoa (Chenopodium quinoa Willd.) in the Brazilian savanna has been successful based on the selection of progeny from valley types. Given the wide variation of environments, an alternative to define the maturation cycle of the plant has been the use of accumulated thermal units (ATU).  This measure allows prediction of the plant cycle and supports the definition of phenology duration useful in crop management and quinoa breeding. This study aimed at calculating the ATU for the 13 codes of the BBCH scale of quinoa by evaluating 12 selected progenies grown in two sowing dates, at 15° 56’ S and 47° 55’ W, altitude of 1.100 m, Brasilia, DF, Brazil. Statistical differences were predominant from the beginning of the BBCH-50 reproductive phases, classifying the progenies as early, mid-cycle and late. Early maturity progenies and respective ATU for BBCH-89 are BRQ4 (1.676,8), BRQ1 (1,685), and AUR (1,691), contrasting with late BLA (2.239), BRQ3 (1,929.1 GDD), and BRQ8 (1,895). The accumulated thermal units for BBCH-89 ranged from 1565.25 to 2381, with a difference between the earliest and latest genotypes of 815.75.  Progenies selected from existing cultivars are different in thermal unit accumulation, ensuing efficiency in cultivar acquisition to stagger quinoa cultivation. Accumulated thermal units explain the range of plant maturity cycles in selection. Additionally, the calculation of atu for BBCH scale codes is an effective tool for predicting the phenological cycle of quinoa.

Keywords:

Downloads

Download data is not yet available.

Article Details

References (SEE)

Anandhi, A. 2016. Growing degree days - Ecosystem indicator for changing diurnal temperatures and their impact on corn growth stages in Kansas. Ecol. Indic. 61, 149-158. Doi: 10.1016/j.ecolind.2015.08.023

Anchico, W., C.R. Spehar, and M.S. Vilela. 2020. Adaptability of quinoa genotypes to altitudes and population densities in Colombia. Biosci. J. 36, 14-21. Doi: 10.14393/BJ-v36n0a2020-48243

Arnold, C.Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Proc. Amer. Soc. Hort. Sci. 74(1), 430-445.

Asseng, S., I. Foster, and N.C. Turner. 2011. The impact of temperature variability on wheat yields. Global Change Biol. 17(2), 997-1012. Doi: 10.1111/j.1365-2486.2010.02262.x

Bertero, H.D., R.W. King, and A.J. Hall. 1999. Modelling photoperiod and temperature responses of flowering in quinoa (Chenopodium quinoa Willd.). Field Crops Res. 63(1), 19-34. Doi: 10.1016/S0378-4290(99)00024-6

Bertero, H.D., A.J. De la Vega, G. Correa, S.E. Jacobsen, and A. Mujica. 2004. Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Res. 89(2-3), 299-318. Doi: 10.1016/j.fcr.2004.02.006

Bois, J.F., T. Winkel, J.P. Lhomme, J.P. Raffaillac, and A. Rocheteau. 2006. Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: Effects on germination, phenology, growth and freezing. Eur. J. Agron. 25(4), 299-308. Doi: 10.1016/j.eja.2006.06.007

Garcia-Parra, M., D.F. Roa, R. Stechauner, F. García-Molano, D. Bazile, and N.Z. Leguizamon Plazas. 2020b. Effect of temperature on the growth and development of quinoa plants (Chenopodium quinoa Willd.): A review on a global scale. Sylwan 164, 411-433.

Garcia-Parra, M., A. Zurita-Silva, R. Stechauner-Rohringer, D. Roa-Acosta, and S. Jacobsen. 2020a. Quinoa (Chenopodium quinoa willd.) and its relationship with agroclimatic characteristics: A Colombian perspective. Chil. J. Agric. Res. 80(2), 290-302. Doi: 10.4067/S0718-58392020000200290

González, J.A., S.E. Buedo, M. Bruno, and F.E. Prado. 2017. Quantifying cardinal temperatures in quinoa (Chenopodium quinoa) cultivars. Lilloa 54(2), 179-194. Doi: 10.30550/j.lil/2017.54.2/8

Hair, J.F., R.E. Anderson, R.L. Tatham, and W. Black. 2005. Análise multivariada de dados. Bookman Editora, Porto Alegre, Brazil.

Jojoa, W.A., J.R. Peixoto, C.R. Spehar, M.S. Vilela, M. Fagioli, D. Nobrega, J. Cruz, and A. Oliveira. 2021. Evaluation of the physiological quality of quinoa seeds. Afr. J. Agric. Res. 17(5), 802-808. Doi: 10.5897/AJAR2020.15099

Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel. 2006. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259-263.

Maughan, P.J., A. Bonifacio, E.N. Jellen, M.R. Stevens, C.E. Coleman, M. Ricks, S.L. Mason, D.E. Jarvis, B.W. Gardunia, and D.J. Fairbanks. 2004. A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor. Appl. Genet. 109(6), 1188-1195. Doi: 10.1007/s00122-004-1730-9

McMaster, G.S. and W.W. Wilhelm. 1997. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 87(4), 291-300. Doi: 10.1016/S0168-1923(97)00027-0

Montes-Rojas, C., G.A. Burbano-Catuche, E.F. Muñoz-Certuche, and Y. Calderón-Yonda. 2018. Descripción del ciclo fenológico de cuatro ecotipos de (Chenopodium quinua Willd.), en Purace - Cauca, Colombia. Rev. Bio. Agro. 16(2), 26-37. Doi: 10.18684/bsaa.v16n2.1163

Parra-Coronado, A., G. Fischer, and B. Chaves-Cordoba. 2015. Tiempo térmico para estados fenológicos reproductivos de la feijoa (Acca sellowiana (O. Berg) Burret). Acta Biol. Colomb. 20(1), 163-173. Doi: 10.15446/abc.v20n1.43390

Perez-Rea, D. and R. Antezana-Gomez. 2018. The functionality of pseudocereal starches. pp. 509-542. In: Starch in food: Structure, function and applications. 2nd ed. Woodhead Publishing. Doi: 10.1016/B978-0-08-100868-3.00012-3

Reguera, M., C.M. Conesa, A. Gil-Gómez, C.M. Haros, M.Á. Pérez-Casas, V. Briones-Labarca, L. Bolaños, I. Bonilla, R. Álvarez, K. Pinto, Á. Mujica, and L. Bascuñán-Godoy. 2018. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ, 6, e4442. Doi: https://doi.org/10.7717/peerj.4442

Renato, N.S., J.B.L. Silva, G.C. Sediyama, and E.G. Pereira. 2013. Influência dos métodos para cálculo de graus-dia em condições de aumento de temperatura para as culturas de milho e feijão. Rev. Bras. Meteorol. 28(4), 382-388. Doi: 10.1590/S0102-77862013000400004

Salazar-Gutierrez, M.R., J. Johnson, B. Chaves-Cordoba, and G. Hoogenboom. 2013. Relationship of base temperature to development of winter wheat. Int. J. Plant Prod., 7(4), 741-762.

Sharma, A., R. Deepa, S. Sankar, M. Pryor, B. Stewart, E. Johnson, and A. Anandhi. 2021. Use of growing degree indicator for developing adaptive responses: A case study of cotton in Florida. Ecol. Indic. 124, 107383. Doi: 10.1016/j.ecolind.2021.107383

Sosa‐Zuniga, V., V. Brito, F. Fuentes, and U. Steinfort. 2017. Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Ann. Appl. Biol. 171(1), 117-124. Doi: 10.1111/aab.12358

Spehar, C.R., E.R. Francisco, and E.A. Pereira. 2015a. Yield stability of soybean cultivars in response to sowing date in the lower latitude Brazilian Savannah Highlands. J. Agric. Sci. 153(6), 1059-1068. Doi: 10.1017/S0021859614000781

Spehar, C.R., J.E.D.S. Rocha, and R.L.D.B. Santos. 2011. Desempenho agronômico e recomendaciones para cultivo de quinua (BRS Syetetuba) no cerrado. Pesqui. Agropecu. Trop. 41, 145-147. Doi: 10.5216/pat.v41i1.9395

Spehar, C.R., J.E.S. Rocha, W.Q. Ribeiro, R.L.B. Santos, J.L.R. Ascheri, and F.F.J. Souza. 2015b. Advances and challenges for quinoa production and utilization in Brazilo. pp. 562-582. In: State of the art report on quinoa around the world in 2013. FAO, Rome.

Sosa‐Zuniga, V., Brito, V., Fuentes, F., and Steinfort, U. (2017). Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. An. Biol. Aple. 171(1), 117-124. DOI: https://doi.org/10.1111/aab.12358

Souza, A.P., A.C. Silva, M. Pizzatto, and M.E. Souza. 2017. Thermal requirements and productivity of squash (Cucurbita moschata Duch.) in the Cerrado-Amazon Transition. Agrociencia 21(2), 15-22.

Stanschewski, C.S., F.G. Rey, G. Wellman, V.J. Melino, D.S.R. Patiranage, K.S.S.M. Johansen, D. Bertero, H. Oakey, C. Colque-Little, I. Afzal, S. Raubach, N. Miller, J. Streich, D. Amby, E. Buchvaldt, W. Nazgol, M. Mark, A.A. Magdi D. Wu, D. Jacobson, C. Andreasen, C. Jung, K. Murphy, D. Bazile, and M. Tester. 2021. Quinoa phenotyping methodologies: An international consensus. Plants 10(09), 1759 Doi: 10.3390/plants10091759

Ward Jr., J.H. 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236-244.

Zapata, D., M. Salazar, B. Chaves, M. Keller, and G. Hoogenboom. 2015. Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars. I. J. Biometeorol. 59(12), 1771-1781. Doi: 10.1007/s00484-015-0985-y

Citado por: