Skip to main navigation menu Skip to main content Skip to site footer

CO2 capture and water use efficiency in Opuntia stricta (Haw.) at different seasons and evaluation times

Analysis of gas exchange in Opuntia stricta (Haw.). Photo: Instituto Nacional do Semiárido

Abstract

The forage cactus Mexican Elephant Ear is widely incorporated into the animal productive chain of the northeast region of Brazil. However, there is a lack of studies on the physiological dynamics of this cactus. Therefore, this study was conducted at the Estação Experimental Prof. Ignácio Salcedo of the Instituto Nacional do Semiárido (INSA), in Campina Grande, State of Paraíba, Brazil. The aim of this study was to evaluate CO2 uptake and water-use efficiency levels in Opuntia stricta (Haw.) during different seasons and evaluation times. The treatments were distributed using a 24×2 factorial arrangement, which corresponded to the evaluation of gas exchange processes for 24 hours in the rainy (June) and dry (December) seasons. The evaluated parameters were stomatal conductance, transpiration and CO2 uptake rate, internal CO2 concentration, instantaneous water-use efficiency and intrinsic water-use efficiency. The results revealed that gas exchange in the forage cactus was more intense during the rainy season, with good stability, than the low exchange levels during the dry season. Regardless of the season, the CO2 uptake peaked between 24:00 and 02:00. In addition, this range of time is the most suitable to conduct analyses under field conditions.

Keywords

Photosynthetic efficiency, Cactus plant, Mexican Elephant Ear, Gas exchange

PDF

References

  1. Almanza-Merchán, P.J. and G. Fischer. 2012. Tuna (Opuntia ficus-indica (L.) Miller). pp. 1014-1023. In: Fischer, G. (ed.) Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  2. Almeida, I.V.B., J.T.A. Souza, and M.C. Batista. 2019. Melhoramento genético de plantas forrageiras xerófilas: Revisão. Pubvet 13(7), 1-11. Doi: https://doi.org/10.31533/pubvet.v13n7a382.1-11
  3. Alvares, C.A., J.L. Stape, P.C. Sentelhas, J.L. Moraes Gonçalves, and G. Sparovek. 2013. Köppen’s climate classification map for Brazil. Meteorol. Zeits. 22(4), 711-728. Doi: https://doi.org/10.1127/0941-2948/2013/0507
  4. Araújo, J.S., D.D. Pereira, E.C. Lira, E.S. Félix, J.T.A. Souza, and W.B. Lima. 2019. Palma forrageira: plantio e manejo. Instituto Nacional do Semiárido, Campina Grande, Brazil.
  5. Bertolli, S.C., J. Souza, and G.M. Souza. 2015. Caracterização fotossintética da espécie isohídrica Pata-de-Elefante em condições de deficiência hídrica. Caatinga 28(3), 196-205. Doi: https://doi.org/10.1590/1983-21252015v28n322rc
  6. Black, C.C. and C.B. Osmond. 2003. Crassulacean acid metabolism photosynthesis: ‘working the night shift’. Photosynth. Res. 76(2), 329-341. Doi: https://doi.org/10.1023/A:1024978220193
  7. Cajazeira, J.P., M.C.M. Correa, E.I.B. Almeida, R.F. Queiroz, and R.O. Mesquita. 2018. Growth and gas exchange in white pitaya under different concentrations of potassium and calcium. Rev. Ciênc. Agron. 49(1), 112-121. Doi: https://doi.org/10.5935/1806-6690.20180013
  8. Cody, R. 2015. An introduction to SAS, university edition. SAS Institute, Cary, NC.
  9. Davis, S.C., J. Simpson, K.C. Gil-Vega, N.A. Niechayev, E. van Tongerlo, N. Hurtado, L.V. Dever, and A. Búrquez. 2019. Undervalued potential of crassulacean acid metabolism for current and future agricultural production. J. Exp. Bot. 70(22), 6521-6537. Doi: https://doi.org/10.1093/jxb/erz223
  10. Fernandes, F.B.P., C.F. Lacerda, E.M. Andrade, A.L.R. Neves, and C.H.C. Sousa. 2015. Efeito de manejos do solo no déficit hídrico, trocas gasosas e rendimento do feijão-de-corda no Semiárido. Rev. Cienc. Agron. 46(3), 506-515. Doi: https://doi.org/10.5935/1806-6690.20150032
  11. Flexas, J., A. Diaz-Espejo, J. Gago, A. Gallé, J. Galmés, J. Gulías, and H. Medrano. 2014. Photosynthetic limitations in Mediterranean plants: a review. Environ. Exp. Bot. 103(9), 12-23. Doi: https://doi.org/10.1016/j.envexpbot.2013.09.002
  12. Jacinto Júnior, S.G., J.G.L. Moraes, F.D.B. Silva, B.N. Silva, G.G. Sousa, L.L. Oliveira, and R.O. Mesquita. 2019. Respostas fisiológicas de genótipos de fava (Phaseolus lunatus L.) submetidas ao estresse hídrico cultivadas no Estado do Ceará. Rev. Bras. Meteorol. 34(3), 413-422. Doi: https://doi.org/10.1590/0102-7786343047
  13. Larcher, W. 2006. Ecofisiologia vegetal. 2th ed. RIMA, São Carlos, Brazil.
  14. Maranhão, S.R., R.C.F.F. Pompeu, H.A. Souza, R.A. Araújo, R.G. Fontinele, and M.J.D. Cândido. 2019. Morphophysiology of buffel grass grown under different water supplies in the dry and dry-rainy seasons. Rev. Bras. Eng. Agric. Ambient. 23(8), 566-571. Doi: https://doi.org/10.1590/1807-1929/agriambi.v23n8p566-571
  15. Nobel, P.S. 2009. Physicochemical and environmental plant physiology. Academic Press, San Diego, CA.
  16. Nunes, J.C., L.F. Cavalcante, W.E. Pereira, J.T.A. Souza, D.J. Almeida, D. Oresca, and P.D. Fernandes. 2017. Gas exchange and productivity of yellow passion fruit irrigated with saline water and fertilized with potassium and biofertilizer. Cienc. Investig. Agrar. 44(2), 168-183. Doi: https://doi.org/10.7764/rcia.v44i2.1742
  17. Osakabe, Y., K. Osakabe, K. Shinozaki, and L.S.P. Tran. 2014. Response of plants to water stress. Front. Plant Sci. 5(3), 1-8. Doi: https://doi.org/10.3389/fpls.2014.00086
  18. Pimentel, C. 2004. A relação da planta com a água. Universidade Federal Rural do Rio de Janeiro, Serropédica, Brazil.
  19. Rocha, R.S., T.V. Voltolini, and C.A.T. Gava. 2017. Características produtivas e estruturais de genótipos de palma forrageira irrigada em diferentes intervalos de corte. Arch. Zootec. 66(255), 363-371. Doi: https://doi.org/10.21071/az.v66i255.2512
  20. Sampaio, E.V.S.B. 2005. Fisiologia da palma. pp. 43-56. In: Menezes, R.S.C., D.A. Simões, and E.V.S.B. Sampaio (eds.). A palma no Nordeste do Brasil: Conhecimento atual e novas perspectivas. Editora Universitária UFRPE, Recife, Brazil.
  21. Santos, A.L.F., I.A. Mechi, L.M. Ribeiro, and G. Ceccon. 2018. Eficiência fotossintética e produtiva de milho safrinha em função de épocas de semeadura e populações de plantas. Rev. Agric. Neotrop. 5(4), 52-60. Doi: https://doi.org/10.32404/rean.v5i4.1631
  22. Silva, M.A., J.L. Jifon, C.L. Santos, C. Junior Jadoski, and J.A.G. Silva. 2013. Photosynthetic capacity and water use efficiency in sugarcane genotypes subject to water deficit during early growth phase. Braz. Arch. Biol. Technol. 56(5), 735-748. Doi: https://doi.org/10.1590/S1516-89132013000500004
  23. Silva, T.G.F., J.T.A. Primo, J.E.F. Morais, W.J.D. Silva, C.A.A. Souza, and M.C. Silva. 2015. Crescimento e produtividade de clones de palma forrageira no semiárido e relações com variáveis meteorológicas. Caatinga 28(2), 10-18.
  24. Souza, J.T.A., J.P.F. Ramos, A.J.S. Macedo, J.A. Viana, F.Q. Cartaxo, D. Oresca, and F.G. Oliveira. 2018. Crescimento e produtividade de genótipos de palma forrageira no Semiárido Paraibano. Rev. Cient. Vet. 12(3), 37-42.
  25. Souza, J.T.A., J.E.S. Ribeiro, J.P. Nascimento, J.P.F. Ramos, J.S. Araújo, and L.T.V. Medeiros. 2020. Trocas gasosas e eficiência no uso da água de Nopalea cochenillifera consorciada sob manejos edáficos. Comun. Sci. 11(2), 1-12. Doi: https://doi.org/10.14295/CS.v11i0.3035
  26. Taiz, L., E. Zeiger, I.M. Moller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed, Porto Alegre, Brazil.
  27. Winter, K. and J.A.M. Holtum. 2014. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J. Exp. Bot. 18(13), 1-17. Doi: https://doi.org/10.1093/jxb/eru063

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.