Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Modulación de la actividad PGPR de Lysinibacillus pinottii sp. nov. PB211 a través de la sensibilidad/resistencia de las plantas a las auxinas exógenas

Modulating PGPR activity via plant auxin sensitivity. Photo: M. Pantoja-Guerra

Resumen

La efectividad de las cepas de rizobacterias promotoras del crecimiento vegetal (PGPR) productoras de ácido indol-3-acético (AIA) puede verse influenciada por la resistencia de la planta a las auxinas. En este trabajo, se investigó el impacto de la resistencia a las auxinas en la actividad PGPR de Lysinibacillus pinottii sp. nov. PB211. PB211 produjo un promedio de 32 μg mL-1 de ácido indol-3-acético (AIA). Evidencia genética indicó que PB211 utiliza la vía del ácido indolpirúvico para la síntesis de AIA. En cuanto a la respuesta de los modelos de plantas al tratamiento con AIA, los modelos de eudicotiledóneas (pepino y frijol) mostraron mayor sensibilidad al AIA en comparación con los modelos de monocotiledóneas (maíz y brachiaria). Las monocotiledóneas requirieron concentraciones más altas de AIA para provocar cambios fenotípicos en la arquitectura de la raíz. Se encontró que la resistencia/sensibilidad de las plantas a las auxinas exógenas modula la actividad PGPR de PB211. La inoculación con PB211 en diferentes concentraciones resultó en efectos diferenciados en los modelos de plantas. Las eudicotiledóneas mostraron una actividad PGPR significativa desde concentraciones bajas de inóculo, mientras que las monocotiledóneas requirieron concentraciones más altas de inóculo para exhibir un efecto similar y consistente. El efecto de PB211 también fue evaluado en plantas silvestres de Arabidopsis thaliana (col-0 "sensible a auxinas") y mutantes (aux1-7/axr4-2 "resistentes a auxinas"). PB211 tuvo un efecto en forma de "campana" en la respuesta de las plantas silvestres, una respuesta típica de la actividad de auxinas, por lo que el efecto PGPR disminuyó en la concentración más alta de inóculo. Por el contrario, las plantas mutantes exhibieron una mayor actividad PGPR con concentraciones más altas de inóculo, compensando su fenotipo deficiente en auxinas. Estos hallazgos sugieren que la resistencia/sensibilidad de las plantas a las auxinas exógenas influye en la actividad de los PGPR productores de auxinas. Estas relaciones podrían facilitar el desarrollo y la aplicación de inoculantes biológicos más efectivos para la agricultura.

Palabras clave

Monocotiledóneas, Eudicotiledóneas, Ácido indol-3-acético, Promoción del crecimiento de plantas, Biofertilizantes, Bioestimulantes

PDF (English)

Citas

  1. Aloni, R. and T. Plotkin. 1985. Wound-induced and naturally occurring regenerative differentiation of xylem in Zea mays L. Planta 163(1), 126-132. Doi: https://doi.org/10.1007/bf00395906
  2. Alviar, K.B., K.M.R. Lum, J. Christine, and M.S. Pedro. 2021. Amplification and sequence analysis of indole-3-pyruvic acid (IPyA) pathway related genes from Bacillus spp. Biotechnology (Faisalabad) 20(1), 22-30. Doi: https://doi.org/10.3923/biotech.2021.22.30
  3. Balzan, S., G.S. Johal, and N. Carraro. 2014. The role of auxin transporters in monocots development. Front. Plant Sci. 5, 393. Doi: https://doi.org/10.3389/fpls.2014.00393
  4. Bashan, Y., L.E. De-Bashan, S.R. Prabhu, and J.-P. Hernandez. 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1), 1-33. Doi: https://doi.org/10.1007/s11104-013-1956-x
  5. Bharucha, U., K. Patel, and U.B. Trivedi. 2013. Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agric. Res. 2(3), 215-221. Doi: https://doi.org/10.1007/s40003-013-0065-7
  6. Blázquez, M.A., D.C. Nelson, and D. Weijers. 2020. Evolution of plant hormone response pathways. Annu. Rev. Plant Biol. 71(1), 327-353. Doi: https://doi.org/10.1146/annurev-arplant-050718-100309
  7. Blouin, M. 2018. Chemical communication: An evidence for co-evolution between plants and soil organisms. Appl. Soil Ecol. 123, 409-415. Doi: https://doi.org/10.1016/j.apsoil.2017.10.028
  8. Bunsangiam, S., N. Thongpae, S. Limtong, and N. Srisuk. 2021. Large scale production of indole-3-acetic acid and evaluation of the inhibitory effect of indole-3-acetic acid on weed growth. Sci. Rep. 11(1), 1-13. Doi: https://doi.org/10.1038/s41598-021-92305-w
  9. Calderon-Villalobos, L.I., X. Tan, N. Zheng, and M. Estelle. 2010. Auxin perception--structural insights. Cold Spring Harb. Perspect. Biol. 2(7), a005546. Doi: https://doi.org/10.1101/cshperspect.a005546
  10. Cao, J., G. Li, D. Qu, X. Li, and Y. Wang. 2020. Into the seed: Auxin controls seed development and grain yield. Int. J. Mol. Sci. 21(5), 1662. Doi: https://doi.org/10.3390/ijms21051662
  11. Castellano‐Hinojosa, A., V. Pérez‐Tapia, E.J. Bedmar, and N. Santillana. 2018. Purple corn-associated rhizobacteria with potential for plant growth promotion. J. Appl. Microbiol. 124(5), 1254-1264. Doi: https://doi.org/10.1111/jam.13708
  12. Chapman, E.J. and M. Estelle. 2009. Mechanism of auxin-regulated gene expression in plants. Annu. Rev. Genet. 43(1), 265-285. Doi: https://doi.org/10.1146/annurev-genet-102108-134148
  13. Chen, Y., Y. Xie, C. Song, L. Zheng, X. Rong, L. Jia, L. Luo, C. Zhang, X. Qu, and W. Xuan. 2018. A comparison of lateral root patterning among dicot and monocot plants. Plant Sci. 274, 201-211. Doi: https://doi.org/10.1016/j.plantsci.2018.05.018
  14. Conklin, P.A., J. Strable, S. Li, and M.J. Scanlon. 2019. On the mechanisms of development in monocot and eudicot leaves. New Phytol. 221(2), 706-724. Doi: https://doi.org/10.1111/nph.15371
  15. Dharmasiri, S., R. Swarup, K. Mockaitis, N. Dharmasiri, S.K. Singh, M. Kowalchyk, A. Marchant, S. Mills, G. Sandberg, M.J. Bennett, and M. Estelle. 2006. AXR4 is required for localization of the Auxin Influx Facilitator AUX1. Science 312(5777), 1218-1220. Doi: https://doi.org/10.1126/science.1122847
  16. Duca, D.R., D.R. Rose, and B.R. Glick. 2018. Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie Van Leeuwenhoek 111(9), 1645-1660. Doi: https://doi.org/10.1007/s10482-018-1051-7
  17. Dunlap, C.A., E.T. Johnson, M. Burkett-Cadena, J. Cadena, and E.J. Muturi. 2024. Lysinibacillus pinottii sp. nov., a novel species with anti-mosquito and anti-mollusk activity. Antonie van Leeuwenhoek 117(1), 100. Doi: https://doi.org/10.1007/s10482-024-01993-7
  18. Fendrych, M., M. Akhmanova, J. Merrin, M. Glanc, S. Hagihara, K. Takahashi, N. Uchida, K.U. Torii, and J. Friml. 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4(7), 453-459. Doi: https://doi.org/10.1038/s41477-018-0190-1
  19. Glick, B.R., C. Liu, S. Ghosh, and E.B. Dumbroff. 1997. Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol. Biochem. 29(8), 1233-1239. Doi: https://doi.org/10.1016/s0038-0717(97)00026-6
  20. Haga, K. and M. Lino. 1998. Auxin-growth relationships in maize coleoptiles and pea internodes and control by auxin of the tissue sensitivity to auxin. Plant Physiol. 117(4), 1473-1486. Doi: https://doi.org/10.1104/pp.117.4.1473
  21. Hobbie, L. and M. Estelle. 1995. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7(2), 211-220. Doi: https://doi.org/10.1046/j.1365-313X.1995.7020211.x
  22. Jinal, H.N., K. Gopi, K. Kumar, and N. Amaresan. 2021. Effect of zinc-resistant Lysinibacillus species inoculation on growth, physiological properties, and zinc uptake in maize (Zea mays L.). Environ. Sci. Pollut. Res. 28(6), 6540-6548. Doi: https://doi.org/10.1007/s11356-020-10998-4
  23. Kaminsky, L.M., R.V. Trexler, R.J. Malik, K.L. Hockett, and T.H. Bell. 2019. The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 37(2), 140-151. Doi: https://doi.org/10.1016/j.tibtech.2018.11.011
  24. Khan, A.L., B.A. Halo, A. Elyassi, S. Ali, K. Al-Hosni, J. Hussain, A. Al-Harrasi, and I.-J. Lee. 2016. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron. J. Biotechnol. 21, 58-64. Doi: https://doi.org/10.1016/j.ejbt.2016.02.001
  25. Kim, W.-J. and H.-G. Song. 2012. Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Korean J. Microbiol. 48(1), 1-7. Doi: https://doi.org/10.7845/kjm.2012.48.1.001
  26. Kremer, R.J. 2007. Deleterious Rhizobacteria. pp. 335-357. In: Gnanamanickam, S.S. (ed.). Plant-associated bacteria. Springer, Dordrecht. Doi: https://doi.org/10.1007/978-1-4020-4538-7_10
  27. Kudoyarova, G., T. Arkhipova, T. Korshunova, M. Bakaeva, O. Loginov, and I.C. Dodd. 2019. Phytohormone mediation of interactions between plants and Non-Symbiotic growth promoting bacteria under edaphic stresses. Front. Plant Sci. 10, 1368. Doi: https://doi.org/10.3389/fpls.2019.01368
  28. Kudoyarova, G.R., L.B. Vysotskaya, T.N. Arkhipova, L.Yu. Kuzmina, N.F. Galimsyanova, L.V. Sidorova, I.M. Gabbasova, A.I. Melentiev, and S.Yu. Veselov. 2017. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiol. Plant. 39(11), 1-8. Doi: https://doi.org/10.1007/s11738-017-2556-9
  29. Kumar, M., V.P. Giri, S. Pandey, A. Gupta, M.K. Patel, A.B. Bajpai, S. Jenkins, and K.H.M. Siddique. 2021. Plant-Growth-Promoting rhizobacteria emerging as an effective bioinoculant to improve the growth, production, and stress tolerance of vegetable crops. Int. J. Mol. Sci. 22(22), 12245. Doi: https://doi.org/10.3390/ijms222212245
  30. Kunkel, B.N. and C.P. Harper. 2018. The roles of auxin during interactions between bacterial plant pathogens and their hosts. J. Exp. Bot. 69(2), 245-254. Doi: https://doi.org/10.1093/jxb/erx447
  31. Lavy, M. and M. Estelle. 2016. Mechanisms of auxin signaling. Development 143(18), 3226-3229. Doi: https://doi.org/10.1242/dev.131870
  32. Lee, R.D.-W. and H.-T. Cho. 2013. Auxin, the organizer of the hormonal/environmental signals for root hair growth. Front. Plant Sci. 4, 448. Doi: https://doi.org/10.3389/fpls.2013.00448
  33. Lobet, G., L. Pagès, and X. Draye. 2011. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol. 157(1), 29-39. Doi: https://doi.org/10.1104/pp.111.179895
  34. Lobet, G., M.P. Pound, J. Diener, C. Pradal, X. Draye, C. Godin, M. Javaux, D. Leitner, F. Meunier, P. Nacry, T.P. Pridmore, and A. Schnepf. 2015. Root system markup language: toward a unified root architecture description language. Plant Physiol. 167(3), 617-627. Doi: https://doi.org/10.1104/pp.114.253625
  35. Malik, D.K. and S.S. Sindhu. 2011. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol. Mol. Biol. Plants 17(1), 25-32. Doi: https://doi.org/10.1007/s12298-010-0041-7
  36. Mangmang, J.S., R. Deaker and G. Rogers. 2015. Optimal plant growth-promoting concentration of Azospirillum brasilense inoculated to cucumber, lettuce and tomato seeds varies between bacterial strains. Isr. J. Plant Sci. 62(3), 145-152. Doi: https://doi.org/10.1080/07929978.2015.1039290
  37. Masuda, Y. 1980. Auxin-induced changes in noncellulosic polysaccharides of cell walls of monocot coleoptiles and dicot stems. pp. 79-89. In: Proc. 10th International Conference on Plant Growth Substances, Madison, WI. Doi: https://doi.org/10.1007/978-3-642-67720-5_7
  38. McSteen, P. 2010. Auxin and monocot development. Cold Spring Harb. Perspect. Biol. 2(3), a001479. Doi: https://doi.org/10.1101/cshperspect.a001479
  39. Mohite, B. 2013. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr. 13(3), 638-649. Doi: https://doi.org/10.4067/s0718-95162013005000051
  40. Moller, B. and D. Weijers. 2009. Auxin control of embryo patterning. Cold Spring Harb. Perspect. Biol. 1(5), a001545. Doi: https://doi.org/10.1101/cshperspect.a001545
  41. Naureen, Z., N.U. Rehman, H. Hussain, J. Hussain, S.A. Gilani, S.K.A. Housni, F. Mabood, A.L. Khan, S. Farooq, G. Abbas, and A.A. Harrasi. 2017. Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Front. Microbiol. 8, 1477. Doi: https://doi.org/10.3389/fmicb.2017.01477
  42. Nehl, D.B., S.J. Allen, and J.F. Brown. 1997. Deleterious rhizosphere bacteria: an integrating perspective. Appl. Soil Ecol. 5(1), 1-20. Doi: https://doi.org/10.1016/S0929-1393(96)00124-2
  43. Nelissen, H., N. Gonzalez, and D. Inzé. 2016. Leaf growth in dicots and monocots: so different yet so alike. Curr. Opin. Plant Biol. 33, 72-76. Doi: https://doi.org/10.1016/j.pbi.2016.06.009
  44. Overvoorde, P., H. Fukaki, and T. Beeckman. 2010. Auxin control of root development. Cold Spring Harb. Perspect. Biol. 2(6), a001537. Doi: https://doi.org/10.1101/cshperspect.a001537
  45. Pal, A.K. and C. Sengupta. 2019. Isolation of cadmium and lead tolerant plant growth promoting rhizobacteria: Lysinibacillus varians and Pseudomonas putidafrom Indian agricultural soil. Soil Sediment Contam. Int. J. 28(7), 601-629. Doi: https://doi.org/10.1080/15320383.2019.1637398
  46. Pantoja-Guerra, M., M. Burkett-Cadena, J. Cadena, C.A. Dunlap, and C.A. Ramírez. 2023a. Lysinibacillus spp.: an IAA-producing endospore forming-bacteria that promotes plant growth. Antonie van Leeuwenhoek 116(7), 615-630. Doi: https://doi.org/10.1007/s10482-023-01828-x
  47. Pantoja-Guerra, M., N. Valero-Valero, and C.A. Ramírez. 2023b. Total auxin level in the soil–plant system as a modulating factor for the effectiveness of PGPR inocula: A review. Chem. Biol. Technol. Agric. 10(1), 6. Doi: http://doi.org/10.1186/s40538-022-00370-8
  48. Patten, C.L., A.J.C. Blakney, and T.J.D. Coulson. 2013. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit. Rev. Microbiol. 39(4), 395-415. Doi: https://doi.org/10.3109/1040841X.2012.716819
  49. Perrot-Rechenmann, C. 2010. Cellular responses to auxin: division versus expansion. Cold Spring Harb. Perspect. Biol. 2(5), a001446. Doi: https://doi.org/10.1101/cshperspect.a001446
  50. Phukan, J., J. Deka, K. Kurmi, and S. Kalita. 2021. Deleterious rhizobacteria as a potential bioherbicide-a review. Int. J. Agric. Environ. Sci. 8(2), 1-5. Doi: https://doi.org/10.14445/23942568/ijaes-v8i2p101
  51. Puga-Freitas, R., S. Barot, L. Taconnat, J.-P. Renou, and M. Blouin. 2012. Signal molecules mediate the impact of the earthworm Aporrectodea caliginosa on growth, development and defence of the plant Arabidopsis thaliana. PLoS One 7(12), e49504. Doi: https://doi.org/10.1371/journal.pone.0049504
  52. Ramírez, C.A. and J.W. Kloepper. 2010. Plant growth promotion by Bacillus amyloliquefaciens FZB45 depends on inoculum rate and P-related soil properties. Biol. Fertil. Soils 46(8), 835-844. Doi: https://doi.org/10.1007/s00374-010-0488-2
  53. Rivero, L., R. Scholl, N. Holomuzki, D. Crist, E. Grotewold, and J. Brkljacic. 2014. Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses. pp. 3-25. In: Sanchez-Serrano, J. and J. Salinas (eds.). Arabidopsis protocols. Methods in molecular biology. Vol. 1062. Humana Press, Totowa, NJ. Doi: https://doi.org/10.1007/978-1-62703-580-4_1
  54. Růzicka, K., K. Ljung, S. Vanneste, R. Podhorska, T. Beeckman, J. Friml, and E. Benkova. 2007. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19(7), 2197-2212. Doi: https://doi.org/10.1105/tpc.107.052126
  55. Scarpella, E. and A.H. Meijer. 2004. Pattern formation in the vascular system of monocot and dicot plant species. New Phytol. 164(2), 209-242. Doi: https://doi.org/10.1111/j.1469-8137.2004.01191.x
  56. Shao, J., S. Li, N. Zhang, X. Cui, X. Zhou, G. Zhang, Q. Shen, and R. Zhang. 2015. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb. Cell Fact. 14(1), 130. Doi: https://doi.org/10.1186/s12934-015-0323-4
  57. Spaepen, S., S. Bossuyt, K. Engelen, K. Marchal, and J. Vanderleyden. 2014. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense. New Phytol. 201(3), 850-861. Doi: https://doi.org/10.1111/nph.12590
  58. Suarez, D.E.C., A. Gigon, R. Puga-Freitas, P. Lavelle, E. Velasquez, and M. Blouin. 2014. Combined effects of earthworms and IAA-producing rhizobacteria on plant growth and development. Appl. Soil Ecol. 80, 100-107. Doi: https://doi.org/10.1016/j.apsoil.2014.04.004
  59. Swarup, R., J. Kargul, A. Marchant, D. Zadik, A. Rahman, R. Mills, A. Yemm, S. May, L. Williams, P. Millner, S. Tsurumi, I. Moore, R. Napier, I.D. Kerr, and M.J. Bennett. 2004. Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16(11), 3069-3083. Doi: https://doi.org/10.1105/tpc.104.024737
  60. Tabassum, B., A. Khan, M. Tariq, M. Ramzan, M.S.I. Khan, N. Shahid, and K. Aaliya. 2017. Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil Ecol. 121, 102-117. Doi: https://doi.org/10.1016/j.apsoil.2017.09.030
  61. Vanneste, S. and J. Friml. 2009. Auxin: a trigger for change in plant development. Cell 136(6), 1005-1016. Doi: https://doi.org/10.1016/j.cell.2009.03.001
  62. Vernoux, T., F. Besnard, and J. Traas. 2010. Auxin at the shoot apical meristem. Cold Spring Harb. Perspect. Biol. 2(4), a001487. Doi: https://doi.org/10.1101/cshperspect.a001487
  63. Vissenberg, K., N. Claeijs, D. Balcerowicz, and S. Schoenaers. 2020. Hormonal regulation of root hair growth and responses to the environment in Arabidopsis. J. Exp. Bot. 71(8), 2412-2427. Doi: https://doi.org/10.1093/jxb/eraa048
  64. Woodward, A.W. 2005. AuxIn: Regulation, action, and interaction. Ann. Bot. 95(5), 707-735. Doi: https://doi.org/10.1093/aob/mci083
  65. Yue, J., X. Hu, and J. Huang. 2014. Origin of plant auxin biosynthesis. Trends Plant Sci. 19(12), 764-770. Doi: https://doi.org/10.1016/j.tplants.2014.07.004
  66. Zhang, P., T. Jin, S.K. Sahu, J. Xu, Q. Shi, H. Liu, and Y. Wang. 2019. The distribution of tryptophan-dependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis. Molecules 24(7), 1411. Doi: https://doi.org/10.3390/molecules24071411

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 5 > >> 

También puede {advancedSearchLink} para este artículo.