Skip to main navigation menu Skip to main content Skip to site footer

Absorption of N, P, K, Ca and Mg in cucumber (<i>Cucumis sativus</i> L.) under a hydroponic system

Frutos de pepino variedad Saber. Foto: F.V. Barraza

Abstract

In Mexico, cucumber is cultivated in greenhouses with a supply of nutriments using a hydroponic system with different nutrient solutions and variable concentrations. However, the absorption of nutrients for optimum growth and yield is not exactly known. Therefore, this research was conducted at the Universidad Autónoma Chapingo (Mexico) in order to quantify the amount of macro nutriments absorbed by the crops. Four concentrations of the universal Steiner nutriment solution (25, 75, 125 and 175%) in a complete randomized block design were used. The contents of N, P, K, Ca and Mg were measured in the whole plant dry matter; then, the absorption was calculated. Yield was also evaluated.It was found that the highest nutrient absorption occurred with the nutrient solution at 175% of concentration: N 13,055; P 5,730; K 15,143; Ca 37,281 and Mg 9,750 g/plant.

Keywords

Mineral nutrient uptake, vegetables, cucurbit, fertirrigation, greenhouse.

PDF (Español)

References

  1. Adams, P. y D. Hand. 2015. Effects of humidity and Ca level on dry-matter and Ca accumulation by leaves of cucumber (Cucumis sativus L.). J. Hort. Sci. 68, 767-774. Doi: https://doi.org/10.1080/00221589.1993.11516411
  2. Alonso, M., L. Tijerina, P. Sánchez, A. Martínez, L. Aceves y J. Escalante. 2003. Modelo logístico: herramienta para diagnosticar el cuánto y cuándo fertirrigar. Terra Lat. 21, 225-231.
  3. Anjanappa, M., J. Venkatesha y B. Kumara. 2012. Dry matter accumulation and uptake of nutrients by cucumber (cv. Hassan Local) as influenced by organic, inorganic and bio- fertilizers. Karnataka J. Agric Sci. 25(4), 552-554.
  4. Bai, L., H. Deng, X. Zhang, X, Yu e Y. Li. 2016. Gibberellin is involved in inhibition of cucumber growth and nitrogen uptake at suboptimal root-zone temperatures. PLoS ONE 11(5), e0156188. Doi: https://doi.org/10.1371/journal.pone.0156188
  5. Barraza, F.V. 2012. Acumulación de materia seca del cultivo de pepino (Cucumis sativus L.) en invernadero. Temas Agrarios 17(2), 18-29.
  6. Borlotti, A., G. Vigani y G. Zocchi. 2012. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants. BMC Plant Biol. 12(189), 1-15. Doi: https://doi.org/10.1186/1471-2229-12-189
  7. Carmona, V., L. Costa y A. Filho. 2015. Symptoms of nutrient deficiencies on cucumbers. Int. J. Plant Soil Sci. 8(6), 1-11. Doi: https://doi.org/10.9734/IJPSS/2015/20243
  8. Cornell University. 2010. Basic concepts of plant nutrition. En: NRCCA, https://nrcca.cals.cornell.edu/nutrient/CA1/CA010102.php; consulta: septiembre de 2016.
  9. Dabuxilatu, M. 2005. Interactive effect of salinity and supplemental calcium application on growth and ionic concentration of soybean and cucumber plants. J. Soil Sci. Plant Nutr. 51(4), 549-555. Doi: https://doi.org/10.1111/j.1747-0765.2005.tb00063.x
  10. Danesh, R., S. Bidarigh, E. Azarpour, M. Moraditochaee y H. Bozorgi. 2012. Study effects of nitrogen fertilizer management and foliar spraying of marine plant Ascophyllum nodosum extract on yield of cucumber (Cucumis sativus L.). Intl. J. Agri. Crop Sci. 4(20), 1492-1495.
  11. De-Santiago, J. 2008. Sistemas productivos mediante el manejo de fertirrigación. En: Meister Media Worldwide, http://www.hortalizas.com/miscelaneos/sistemas-productivos-mediante-el-manejo-de-fertirrigacion; consulta: agosto de 2016.
  12. Engelkes, C., I. Widders y H. Price. 1990. Ontogenetic changes in and content in pickling influenced by genotype calcium concentration cucumber fruit as and environment. J. Amer. Soc. Hort. Sci. 115(4), 555-558.
  13. Farag, A., M. Abdrabbo y M. Hassanein. 2010. Response of cucumber for mulch colors and phosphorus levels under greenhouse. Egypt. J. Hort. 37, 53-64.
  14. Feleafel, M., Z. Mirdad y A. Hassan. 2014. Effecte of NPK fertigation rate and starter fertilizer on the growth and yield of cucumber grown in greenhouse. J. Agric. Sci. 6(9), 81-92. Doi: https://doi.org/10.5539/jas.v6n9p81
  15. Gardner, F., R. Pearce y R. Mitchell. 1990. Physiology of crop plants. 2nd ed. Iowa University Press, Ames, IA, USA.
  16. Ghehsareh, A., S. Khosravan y A. Shahabi. 2011. The effect of different nutrient solutions on some growth indices of greenhouse cucumber in soilless culture. J. Plant Breed. Crop Sci. 3(12), 321-326.
  17. Gómez, M., M. Baille, M. González y J. Mercader. 2003. Comparative analysis of water and nutrient uptake of glasshouse cucumber grown in NFT and perlite. Acta Hortic. 614, 175-180. Doi: https://doi.org/10.17660/ActaHortic.2003.614.24
  18. Halitligil, M., A. Akin, H. Kislal, A. Ozturk y A. Deviren. 2002. Yield, nitrogen uptake and nitrogen use efficiency by tomato, pepper, cucumber, melon and eggplant as affected by nitrogen rates applied with drip-irrigation under greenhouse conditions. Int. Atomic Agency Tech. Doc. 1266, 99-110.
  19. Hochmuth, G. y E. Hanlon. 2013. A summary of N, P, and K research with cucumber in Florida. En: Institute of Food and Agricultural Sciences (IFAS Extension), University of Florida, http://edis.ifas.ufl.edu/cv226; consulta: septiembre de 2016.
  20. Hochmuth, G., R. Mylavarapu y E. Hanlon. 2015. The four Rs of fertilizer management. pp. 5-7. En: Morgan, K. (ed.). Nutrient management of vegetable and row crops handbook. Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, USA.
  21. Horto Info. 2016. La producción mundial de pepino supera los 65 millones de toneladas. En: http://www.hortoinfo.es/index.php/4693-prod-mund-pepino-020614; consulta: agosto de 2016.
  22. Hyams, D. 2003. Curve expert 1.3. A comprehensive curve fitting system for Windows©. Unregistered evaluation copy. Starkville, MS, USA.
  23. Jilani, M., A. Bakar, K. Waseem y M. Kiran. 2009. Effect of different levels of NPK on the growth and yield of cucumber (Cucumis sativus) under the plastic tunnel. J. Agric. Soc. Sci. 5(3), 99-101.
  24. Kazemi, M. 2013. Response of cucumber plants to foliar application of calcium chloride and paclobutrazol under greenhouse conditions. Bull. Env. Pharmacol. Life Sci. 2(11), 15-18.
  25. Moreno, E., F. Sánchez, L. González, C. Pérez y N. Magaña. 2011. Efectos del volumen de sustrato y niveles de N-P-K en el crecimiento de plántulas de pepino. Terra Lat. 29(1), 57-63.
  26. Morillo, G., R. Monsalve, J. Mendoza, D. Isea, I. Araujo, L. Vargas y N. Angulo. 2009. Evaluación química y microbiológica del pepino (Cucumis sativus L.) cultivado con aguas residuales. Rev. Téc. Ing. Univ. Zulia 32(1), 68-76.
  27. Nikolic, M., S. Cesco, R. Monte, N. Tomasi, S. Gottardi, A. Zamboni, R. Pinton y Z. Varanini. 2012. Nitrate transport in cucumber leaves is an inducible process involving an increase in plasma membrane H+-ATPase activity and abundance. BMC Plant Biol. 12(66), 1-12. Doi: https://doi.org/10.1186/1471-2229-12-66
  28. Opara, E., K. Zuofa, N. Isirimah y D. Douglas. 2012. Effects of poultry manure supplemented by NPK 15:15:15 fertilizer on cucumber (Cucumis sativus L.) production in Port Harcourt (Nigeria). Afr. J. Biotechnol. 11, 10548-10554. Doi: https://doi.org/10.5897/AJB11.1356
  29. Ortas, I. 2010. Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Span. J. Agric. Res. 8(1), 116-122. Doi: https://doi.org/10.5424/sjar/201008S1-1230
  30. Parra, S., G. Baca, J. Tirado, M. Villareal, P. Sánchez y S. Hernández. 2009. Calidad del fruto, composición y distribución de elementos minerales en pepino en respuesta a silicio y al potencial osmótico de la solución nutritiva. Terra Lat. 27(2), 123-131.
  31. Prajapati, K. y H. Modi. 2016. Growth promoting effect of potassium solubilizing Enterobacter hormaechei (KSB-8) on cucumber (Cucumis sativus) under hydroponic conditions. Int. J. Adv. Res. Biol. Sci. 3(5), 168-173.
  32. Rauthan, B. y M. Schnitzer. 1981. Effects of a soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant Soil 63(3), 491-495. Doi: https://doi.org/10.1007/BF02370049
  33. Reho, A. 2015. El pepino sinaloense continúa escalando su exportación. En: Meister Media Worldwide, http://www.hortalizas.com/horticultura-protegida/el-pepino-sinaloense-continua-escalando-su-exportacion; consulta: agosto de 2016.
  34. Sánchez, F., L. González, E. Moreno, J. Pineda y C. Reyes. 2014. Dinámica nutrimental y rendimiento de pepino cultivado en hidroponía con y sin recirculación de la solución nutritiva. Rev. Fitotec. Mex. 37(2), 261-269.
  35. SAS Institute. 2008. Statistical analysis system. The SAS© system for Windows© version 9.1.3. Cary, NC, USA.
  36. Sívori, M.E. 1986. Nutrición mineral. pp. 245-284. En: Sívori, E.M., E.R. Montaldi y O.H. Caso (eds.). Fisiología vegetal. Vol. II. Editorial Hemisferio Sur, Buenos Aires, Argentina.
  37. Steiner, A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15(2), 134-154. Doi: https://doi.org/10.1007/BF01347224
  38. Valenzuela, H., R. Hamasaki y S. Fukuda. 1994. Field Cucumber production guidelines for Hawaii (No. 14488). HITAHR, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, USA.
  39. Van-Eerd, L. y K. O’Reilly. 2009. Yield, nitrogen dynamics, and fertilizer use efficiency in machine-harvested cucumber. HortScience 44(6), 1712-1718.
  40. Zhang, Y. y H. Shi. 2008. Influences of phosphate deficiency in the medium on growth, activities of antioxidant enzymes and utilization of nitrogen resource in Cucumis sativus hairy roots. Chin. J. Biotechnol. 24(9), 1604-1612.
  41. Zhu, S., G. Wu, H. Cai, Z. Liu, J. Liu, R. Yang y X. Ai. 2015. Effects of low magnesium on photosynthesis characteristics and antioxidant system in cucumber seedlings under low temperature. Yingyong Shengtai Xuebao 26, 1351-1358.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.