Uptake of Fe, Mn, Zn, Cu, and B in a cucumber (Cucumis sativus L.) crop

Main Article Content

Autores

Fernando Vicente Barraza https://orcid.org/0000-0002-3671-2865

Abstract

Cucumber cultivation increases dry matter accumulation and yield when macronutrients and micronutrients are provided at levels that meet  their nutritional extraction. In the case of micronutrients, there is no accurate information on the quantities extracted by this crop when it is sown in a hydroponic system with nutrient solutions, which can lead to excessive applications or nutritional deficiencies. Therefore, this study was conducted at the Universidad Autónoma Chapingo, México, under greenhouse conditions with hydroponic cultivation using a random block experiment design and four treatments consisting of different concentrations of the universal nutrient solution of Steiner: 25, 75, 125 and 175%, in order to determine the yield, the amounts of Fe, Cu, Zn, Mn and B extracted by the aerial part of the crop and the absolute extraction rate. According to the results, the yield was 8.20 kg/plant with the 175% nutrient solution,and, for the  25, 75 and 125% solutions, the yield was 40, 78 and 85%, respectively, of the yield obtained with the 175% solution. For the production of  1 t of fruits, the crop extracted 41.74, 34.90, 12.01, 40.84 and 36.91 g of Fe, Cu, Zn, Mn and B, respectively.

Keywords:

Article Details

Licence

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.

References

Alaoui-Sossé, B., P. Genet, F. Vinit-Dunand, M.-L. Toussaint, D. Epron y P.-M. Badot. 2004. Effect of copper on growth in cucumber plants (Cucumis sativus L.) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci. 166(5), 1213-1218. Doi: 10.1016/j.plantsci.2003.12.032

Anjanappa, M., J. Venkatesha y B. Suresh Kumara. 2012. Dry matter accumulation and uptake of nutrients by cucumber (cv. Hassan Local) as influenced by organic, inorganic and bio-fertilizers. Karnataka J. Agric. Sci. 25(4), 552-554. Doi: 10.1.1.862.3791

Barraza, F.V. 2017. Absorción de N, P, K, Ca y Mg en cultivo de pepino (Cucumis sativus L.) bajo sistema hidropónico. Rev. Colomb. Cienc. Hortic. 11(2), 343-350. Doi: 10.17584/rcch.2017v11i2.7346

Burton, J. 2017. World leaders in cucumber production. En: WorldAtlas, worldatlas.com/articles/the-world-leaders-in-cucumber-production.html; consultado: abril de 2018.

Cikili, Y., H. Samet y S. Dursun. 2013. Effects of potassium treatment on alleviation of boron toxicity in cucumber plant (Cucumis sativus L.). Soil-Water J. 2(2), 719-726.

Dominy, A. e I. Bertling. 2004. Manganese, zinc and silicon studies of cucumber (Cucumis sativus) using a miniature hydroponic system. Acta Hortic. 644, 393-398. Doi: 10.17660/ActaHortic.2004.644.52

Dordas, C. 2008. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 28(1), 33-46. Doi: 10.1051/agro:2007051

Eifediyi, E.K. y S.U. Remison. 2010. Growth and yield of cucumber (Cucumis sativus L.) as influenced by farmyard manure and inorganic fertilizer. J. Plant Breed. Crop Sci. 2(7), 216-220.

El Sayed, H.E.A., R.O.A. Younis y H.S. Al Othaimen. 2015. Responses of changes in productivity, yield and fruit quality of cucumber (Cucumis sativus L.) plant under bio-and chemical nutrition. Eur. J. Acad. Essays. 2(7), 68-74.

FAOSTAT. 2018. Cultivos. En: http://www.fao.org/faostat/en/#home; consultado: mayo de 2018.

Fasaei, R.G. 2013. Influence of foliar application of salicylic acid and soil application of humic materials on cucumber and chickpea grown on a nutrient deficient soil. Intl. J. Agri. Crop Sci. 5(21), 2639-2644.

Ghehsareh, A.M. y N. Samadi. 2012. Effect of soil acidification on growth indices and microelements uptake by greenhouse cucumber. Afr. J. Agric. Res. 7(11), 1659-1665.

Grewal, H.S., B. Maheshwari y S.E. Parks. 2011. Water and nutrient use efficiency of a low-cost hydroponic greenhouse for a cucumber crop: an australian case study. Agr. Water Manage. 98(5), 841-846. Doi: 10.1016/j.agwat.2010.12.010

Hyams, D. 2003. Curve Expert 1.3. Hyams Development, Starkville, MS, USA.

Klamkowski, K., W. Treder y A. Tryngiel. 2011. Growth and photosynthetic activity of cucumber as influenced by different fertilization regimes. Ecol. Chem. Eng. 18(1), 35-41.

Küçükyumuk, Z., H. Özgönen, I. Erdal y F. Eraslan. 2014. Effect of zinc and Glomus intraradices on control of Pythium deliense, plant growth parameters and nutrient concentrations of cucumber. Not. Bot. Horti. Agrobo. 42(1), 138-142. Doi: 10.15835/nbha4219346

Maksimović, J.D., M. Mojović y V. Maksimović. 2016. Silicon facilitates manganese phytoextraction by cucumber (Cucumis sativus L.). Zastita Materijala 57(3), 424-429. Doi: 10.5937/ZasMat1603424D

Mendoza, B., L. Almao, L.M. Marcó y V. Rodríguez. 2015. Evaluación de dos métodos de digestión ácida en el análisis de tejido foliar de caña (Saccharum officinarum L.). Ciencia y Tecnología. 7(2), 9-20. Doi: 10.18779/cyt.v7i2.98

Moreno, D.A., G. Víllora y L. Romero. 2003. Variations in fruit micronutrient contents associated with fertilization of cucumber with macronutrients. Sci. Hort. 97(2), 121-127. Doi: 10.1016/S0304-4238(02)00147-4

Moreno, D., B. Hernández, J. Barrios, A. Ibáñez, W. Cruz y R. Berdeja. 2015. Calidad poscosecha de frutos de pepino cultivados con diferente solución nutritiva. Rev. Mex. Cienc. Agric. 6(3), 637-643. Doi: 10.29312/remexca.v6i3.648

Motior, M.R., A.S. Abdou, F.H. Al Darwish, K.A. El-Tarabily, M.A. Awad, F. Golam y M. Sofian-Azirun. 2011. Influence of elemental sulfur on nutrient uptake, yield and quality of cucumber grown in sandy calcareous soil. Aust. J. Crop Sci. 5(12), 1610-1615.

Nwofia, G.E., A.N. Amajuoyi y E.U. Mbah. 2015. Response of three cucumber varieties (Cucumis sativus L.) to planting season and NPK fertilizer rates in lowland humid tropics: sex expression, yield and Inter-relationships between yield and associated traits. Int. J. Agric. For. 5(1), 30-37.

Pso, O. y I. Nweke. 2015. Effect of poultry manure and mineral fertilizer on the growth performance and quality of cucumber fruits. J. Exp. Biol. Agric. Sci. 3(4), 362-367. Doi: 10.18006/2015.3(4).362.367

Ramírez-Pérez, L., A.B. Morales-Díaz, K. de Alba-Romenus, S. González-Morales, A. Benavides-Mendoza y A. Juárez-Maldonado. 2017. Determination of micronutrient accumulation in greenhouse cucumber crop using a modelling approach. Agronomy 7(4), 79-96. Doi: 10.3390/agronomy7040079

Rouphael, Y., M. Cardarelli, E. Rea y G. Colla. 2008. Grafting of cucumber as a means to minimize copper toxicity. Environ. Exp. Bot. 63(1-3), 49-58. Doi: 10.1016/j.envexpbot.2007.10.015

Sadzawka, A., R. Grez Z., M.A. Carrasco y M.L. Mora. 2004. Métodos de análisis de tejidos vegetales. En: Comisión de Normalización y Acreditación-Sociedad Chilena de la Ciencia del Suelo; Instituto de Investigaciones Agropecuarias, Santiago.

SAS Institute Inc. 2008. SAS user's guide: Statistical analysis system. Version 9.0. SAS Institute, Cary, NC.

Song, W. y X. Qiao. 2008. A regression model of dry matter accumulation for solar greenhouse cucumber. pp. 1346-1352. En: Li, D. (eds.). Computer and computing technologies in agriculture. Vol. II. CCTA 2007. The International Federation for Information Processing. Vol 259. Springer, Boston, MA.

Steiner, A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15(2), 134-154. Doi: 10.1007/BF01347224

Sánchez-del-Castillo, F., L. González-Molina, E.C. Moreno-Pérez, J. Pineda-Pineda y E.C. Reyes-González. 2014. Dinámica nutrimental y rendimiento de pepino cultivado en hidroponía con y sin recirculación de la solución nutritiva. Rev. Fitotec. Mex. 37(3), 261-269.

Sánchez-del-Castillo, F. y E. Escalante. 1988. Hidroponia. 3a ed. Imprenta Universitaria de la Universidad Autónoma Chapingo, Texcoco, México. pp. 99-151.

Savvas, D., G. Ntatsi y P. Barouchas. 2013. Impact of grafting and rootstock genotype on cation uptake by cucumber (Cucumis sativus L.) exposed to Cd or Ni stress. Sci. Hortic. 149, 86-96. Doi: 10.1016/j.scienta.2012.06.030

Tabaldi, L.A., R. Ruppenthal, D. Cargnelutti, V.M. Morsch, L.B. Pereira y R.M.C. Schetinger. 2007. Effects of metal elements on acid phosphatase activity in cucumber (Cucumis sativus L.) seedlings. Environ. Exp. Bot. 59(1), 43-48. Doi: 10.1016/j.envexpbot.2005.10.009

Tzerakis, C., D. Savvas, N. Sigrimis y G. Mavrogiannopoulos. 2013. Uptake of Mn and Zn by cucumber grown in closed hydroponic systems as influenced by the Mn and Zn concentrations in the supplied nutrient solution. HortScience 48(3), 373-379. Doi: 10.21273/HORTSCI.48.3.373

Vieira Neto, J., F.O.G. Menezes Júnior y P.A. Souza Gonçalves. 2013. Produção e curva de crescimento de pepineiros para conserva em manejo convencional e com controle alternativo de pragas. Rev. Ciênc. Agrovet. 12(3), 229-237.

Vigani, G., D. Di Silvestre, A.M. Agresta, S. Donnini, P. Mauri, C. Gehl, F. Bittner e I. Murgia 2017. Molybdenum and iron mutually impact their homeostasis in cucumber (Cucumis sativus L.) plants. New Phytol. 213(3), 1222-1241. Doi: https://doi.org/10.1111/nph.14214

Downloads

Download data is not yet available.