Skip to main navigation menu Skip to main content Skip to site footer

It is possible to maintain productivity and quality standards in carnation with less nitrogen in the fertigation formula

Plants of standard carnation cv. Don Pedro crop, cultivated under plastic greenhouse conditions at Centro Agropecuario Marengo, Universidad Nacional de Colombia. Photo: A.P. Baracaldo

Abstract

Although nitrogen is the most widely used fertilizer in agriculture, it contaminates the surface and groundwater through leaching. A decrease in the concentration of total nitrogen and changes in the ammonium:nitrate ratio can provide information for a better use of this nutrient. The objective of this study was to evaluate the effect of a decrease in total nitrogen and an increase in the percentage of N-NH4+ on indicators of growth, productivity, quality and nitrogen use efficiency (NUE) in carnation cultivation. In the Centro Agropecuario Marengo at the Universidad Nacional de Colombia, two concentrations of total nitrogen were evaluated (200-140 mg L-1 in the vegetative phase and 160-112 mg L-1 in the productive phase) with three ratios of N-NH4:N-NO3 (5:95, 15:85 and 25:75) in standard carnation plants cv. Don Pedro grown in substrate. In both fertigation formulas, similar productivity and qualities were obtained, and the formula with less total N provided better NUE, mitigating the negative impact of this nutrient on the environment. Likewise, the ammoniacal component played a preponderant role: the number of floral stems per plant decreased as the ammoniacal component increased, similar to that observed with the percentage of flowering stems in the ‘Select’ quality grade.

Keywords

Dianthus caryophyllus L., Cut flowers, Soilless culture, Growth index, Ammonium: nitrate ratio

PDF

References

  1. Abasi, H., Babalar, M., Lessani, H. y Naderi, R. 2016. Effects of nitrogen form of nutrient solution on uptake and concentration macro element and morphological trait in hydroponic tulip. J. Plant Nutr. 39(12), 1745-1751. Doi: 10.1080/01904167.2016.1201110
  2. Azcón-Bieto, J. y M. Talón. 2000. Fundamentos de fisiología vegetal. Interamericana McGraw Hill, Barcelona: 522p.
  3. Baracaldo A, A. del P., Ibagué O, A. y Flórez R, V.J. 2010. Tasas e índices de crecimiento a segundo pico de cosecha en clavel estándar cv. Nelson cultivado en suelo y en sustratos substrates to second harvest peak. Agron. Colomb. 28(2), 209-217.
  4. Barker, A. y G. Bryson. 2007. Nitrogen. pp. 22-23. En: Barker, A.V y Pilbeam, D. J. (eds.). Handbook of plant nutrition. CRC Press. Taylor y Francis, Boca Raton.
  5. Cabrera, R.I. 2006. Consideraciones sobre nutrición mineral y fertilización en rosas. pp. 145-161. En: Flórez, V.J. de la C. Fernández, A.; Miranda, D.; Chaves, B y J.M. Guzmán. (eds.). Avances sobre fertirriego en la floricultura colombiana. Editorial Universidad Nacional de Colombia Unibiblos, Bogotá.
  6. Cárdenas M., C.A., Rivera G., I.F., Flórez R., V.J., Chaves C., B. y C. Piedrahíta W. 2006. Growth analysis of standard carnation cv. “Nelson” in different substrates. Acta Hortic. 718, 623-629.
  7. Carranza, C., Lanchero, O., Miranda, D. y B. Chaves. 2009. Análisis del crecimiento de lechuga (Lactuca sativa L.) “Batavia” cultivada en un suelo salino de la Sabana de Bogotá. Agron. Colomb. 27(1), 41-48.
  8. Carrillo P., I.F., Mejía M., B. y A. Franco H.F. 1994. Manual de laboratorio para análisis foliares. Cenicafé, Chinchiná.
  9. Criollo, H. y García, J. 2009. Efecto de la densidad de siembra sobre el crecimiento de plantas de rábano (Raphanus sativus L.) bajo invernadero. Rev. Colomb. Cienc. Hortic. 3(2), 210-222.
  10. Dufour, L. y V. Guérin. 2005. Nutrient solution effects on the development and yield of Anthurium andreanum Lind. in tropical soilless conditions. Sci. Hortic. 105(2), 269-282. Doi: 10.1016/j.scienta.2005.01.022
  11. Good, A.G., Shrawat, A.K. y D.G. Muench. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 9(12), 597-605. Doi: 10.1016/j.tplants.2004.10.008
  12. Grime, J.P. y R. Hunt. 1975. Relative Growth-Rate: Its Range and Adaptive Significance in a Local Flora. J. Ecol. 63(2), 393. Doi: 10.2307/2258728
  13. Hunt, R. 1978. Plant growth analysis. Edward Arnold Publishers, London.
  14. Jin, X., Yang, G., Tan, C. y C. Zhao. 2015. Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn. Sci. Rep. 5, 1-9. Doi: 10.1038/srep09311
  15. Khalaj, M.A., Kiani, S., Khoshgoftarmanesh, A.H. y R. Amoaghaie. 2017. Growth, quality, and physiological characteristics of gerbera (Gerbera jamesonii L.) cut flowers in response to different NO3−:NH4+ ratios. Hortic. Environ. Biotechnol. 58(4), 313–323. Doi: 10.1007/s13580-017-0067-7
  16. Kiba, T., Kudo, T., Kojima, M. y H. Sakakibara. 2011. Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin. J. Exp. Bot. 62(4), 1399-1409. Doi: 10.1093/jxb/erq410
  17. Kumar, A. Rana, G.S, Sharma, R. y D.S. Prince. 2016. Flowering of Carnation as Influenced by different Levels of Nitrogen and Azotobacter Strains. Indian J. Hortic. 6(2), 222-225.
  18. Lupini, A., Princi, M.P., Araniti, F., Miller, A.J., Sunseri, F. y M.R. Abenavoli. 2017. Physiological and molecular responses in tomato under different forms of N nutrition. J. Plant Physiol. 216, 17-25. Doi: 10.1016/j.jplph.2017.05.013
  19. Muthukrishnan, R., Arulmozhiselvan, K., Jawaharlal, M. y T. Padmavathi. 2014. Recovery of fertilizer nitrogen by carnation grown with nutripellet pack and soil nitrogen retention using 15 N tracer. Res. Enviroment Life Sci. 7(4), 271-274.
  20. Rahman, M.A., Sarker, M.A.Z., Amin, M.F., Jahan, A.H.S. y M.M. Akhter. 2011. Yield response and nitrogen use efficiency of wheat under different doses and split application of nitrogen fertilizer. Bangladesh J. Agric. Res. 36, 231–240.
  21. Roosta, H.R., 2014. Effect of ammonium: Nitrate ratios in the response of strawberry to alkalinity in hydroponics. J. Plant Nutr. 37(10), 1676-1689. Doi: 10.1080/01904167.2014.888749
  22. Santos, C. M., Segura, A. M. y L. Ñústez. C.E. 2010. Análisis de crecimiento y relación fuente-demanda de cuatro variedades de papa (Solanum tuberosum L.) en el municipio de Zipaquirá (Cundinamarca, Colombia). Rev. Fac. Nac. Agron. Medellín. 63(1), 5253-5266.
  23. Schipper, L.A., Robertson, W.D., Gold, A.J., Jaynes, D.B. y S.C. Cameron. 2010. Denitrifying bioreactors - An approach for reducing nitrate loads to receiving waters. Ecol. Eng. 36(11), 1532-1543. Doi: 10.1016/j.ecoleng.2010.04.008
  24. Tabatabaei, S., Fatemi, L. y E. Fallahi. 2006. Effect of ammonium: Nitrate ratio on yield, calcium concentration, and photosynthesis rate in strawberry. J. Plant Nutr. 29(7), 1273-1285. Doi: 10.1080/01904160600767575
  25. Taiz L. y E. Zeiger 2002. Plant Physiology. Sinauer Associates Publishers, Sunderland.
  26. Ucar, Y. Kazaz, S., Eraslan, F. y H. Baydar. 2017. Effects of different irrigation water and nitrogen levels on the water use, rose flower yield and oil yield of Rosa damascena. Agric. Water Manag.182, 94-102.
  27. Zhang, H., Chi, D., Wang, Q., Fang, J. y X. Fang. 2011. Yield and Quality Response of Cucumber to Irrigation and Nitrogen Fertilization Under Subsurface Drip Irrigation in Solar Greenhouse. Agric. Sci. China 10(6), 921-930. Doi: 10.1016/S1671-2927(11)60077-1

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.