How does the physiological activity and growth of tomato plants react to the use of a soil-mineral compound?

Main Article Content


Isabella Sabrina Pereira
Evandro Binotto Fagan
Ellen Mayara Alves Cabral
Daniele Cristina Fontana
Renan Caldas Umburanas
Luís Henrique Soares


The tomato crop has a high productive potential that can be depleted by biotic and abiotic stresses. Increased plant resilience to stress conditions has been reported with foliar applications of soil-mineral compounds; however, it is necessary to better understand how plants react to the use of this compound. Thus, this study evaluated the effect of foliar applications of a soil-mineral compound on the physiological and growth attributes of tomato plants. This experiment was carried out in Lagoa Formosa/MG during 2016. Different rates of the soil-mineral compound were used during the crop cycle, forming four distinct managements. The management consisted of different doses of the mineral compound in four stages after transplanting the tomato seedlings. The experiment design used randomized blocks. The following physiological evaluations were performed: total soluble protein, hydrogen peroxide, nitrate reductase enzyme activity, urease, superoxide dismutase (SOD), peroxidase, phenylalanine ammonia lyase, and lipid peroxidation (LP). The growth assessments were plant biomass and yield. Foliar applications of the soil-mineral compound increased the activity of the SOD enzyme by 4.17 and 6.25%. The use of the soil-mineral compound also increased the LP activity and reduced the antioxidant enzyme activity. The foliar application of the soil-mineral compost at doses of 0.5, 0.750, 1.0 and 1.0 kg ha-1 at 15, 25, 40 and 60 days after transplanting, respectively, increased the yield of the table tomatoes by 20%.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.


Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24(12), 1337-134. Doi: 10.1046/j.1365-3040.2001.00778.x

Barbosa, M.R., M.M.A. Silva, L. Willadino, C. Ulisses, and T.R. Camara. 2014. Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Ciênc. Rural 44(3), 453-460. Doi: 10.1590/S0103-84782014000300011

Bélanger, R.R., N. Benhamou, and J.G. Menzies. 2003. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology 93(4), 402-412. Doi: 10.1094/PHYTO.2003.93.4.402

Benincasa, M.M.P. 2004. Análise de crescimento de plantas: noções básicas. FUNEP, Jaboticabal, Brazil.

Beuchamp, C.H. and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44(1), 276-287. Doi: 10.1016/0003-2697(71)90370-8

Boeckx, T., A.L. Winters, K.J. Webb, and A.H. Kingston-Smith. 2015. Polyphenol oxidase in leaves; is there any significance to the chloroplastic localization? J. Exp. Bot. 66(12), 3571-3579. Doi: 10.1093/jxb/erv141

Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1-2), 248-254. Doi: 10.1016/0003-2697(76)90527-3

Carrascosa, M., S. Sanchez-Moreno, and J.L. Alonso-Prados. 2015. Effects of organic and conventional pesticides on plant biomass, nematode diversity and the structure of the soil food web. Nematol. 17(1), 11-26. Doi: 10.1163/15685411-00002849

Chen, Z. and D.R. Gallie. 2005. Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol. 138(3), 1673-1689. Doi: 10.1104/pp.105.062000

Cooke, J. and M.R. Leishman. 2016. Consistent alleviation of abiotic stress with silicone addition: a meta-analysis. Funct. Ecol. 30(8), 1340-1357. Doi: 10.1111/1365-2435.12713

Cruz, C.D. 2013. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron. 35(3), 271-276. Doi: 10.4025/actasciagron.v35i3.21251

Dayan, F.E., C.L. Cantrell, and S.O. Duke. 2009. Natural products in crop protection. Bioorg. Med. Chem. 17(12), 4022-342. Doi: 10.1016/j.bmc.2009.01.046

Dias, T., H.C. Mello F.R.R. Alves, R.F. Carvalho, K.S. Carneiro, and C.M. Sousa. 2015. Compostos fenólicos e capacidade antioxidante em frutos de tomateiros mutantes fotomorfogenéticos. Ciênc. Rural 5(45), 782-787. Doi: 10.1590/0103-8478cr20140098

Du, Y.D., H.X. Cao, S.Q. Liu, X.B. Gu, and Y.X. Cao. 2017. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agric. 16(5), 1153-1161. Doi: 10.1016/S2095-3119(16)61371-0

Elawad, S.H., G.J. Gascho, and J.J. Street. 1982. Response of sugarcane to silicate source and rate: growth and yield. Agron. J. 74(3), 481-484. Doi: 10.2134/agronj1982.00021962007400030019x

Etesami, H. 2018. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol. Environ. Saf. 147, 175-191. Doi: 10.1016/j.ecoenv.2017.08.032

FAOSTAT. 2016. Crops. In:; consulted: December, 2016.

Gomes, R.S.S., A.C.F. Demartelaere, L.C. Nascimento, W.O. Maciel, and D.B.N.S. Wanderley. 2016. Bioatividade de indutores de resistência no manejo da antracnose da goiabeira (Psidium guajava L.). Summa Phytopathol. 42(2), 149-154. Doi: 10.1590/0100-5405/2103

Gomes, E.C.S., R.P. Leite, F.J.A. Silva, L.S. Cavalcanti, L.C. Nascimento, and S.M. Silva. 2011. Manejo do míldio e ferrugem em videira com indutores de resistência: produtividade e qualidade pós-colheita. Trop. Plant Pathol. 36(5), 332-335.

Gomes, F.B., J.C. Moraes, C.D. Santos, and M.M. Goussain. 2005. Resistance induction in wheat plants by silicon and aphids. Sci. Agric. 62(6), 547-551. Doi: 10.1590/S0103-90162005000600006

Gonçalves, V.G. 2009. Arquitetura de planta, teores de clorofila e produtividade de batata, CV. atlantic, sob doses de silicato de potássio via foliar. MSc thesis. Universidade Federal de Uberlândia, Uberlândia, Brazil.

Graham, J.H. and M.E. Myers. 2011. Soil application of SAR inducers imidacloprid, thiamethoxam, and acibenzolar-S-methyl for citrus canker control in young grapefruit trees. Plant Dis. 95(6), 725-728. Doi: 10.1094/PDIS-09-10-0653

Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125(1), 189-198. Doi: 10.1016/0003-9861(68)90654-1

Hodson, M.J., P.J. White, A. Mead, and M.R. Broadley. 2005. Phylogenetic variation in the silicon composition of plants. Ann. Bot. 96(6), 1027-1046. Doi: 10.1093/aob/mci255

Hogan, M.E., I.E. Swift, and J. Cone. 1983. Urease assay and ammonia release from leaf tissues. Phytochem. 22(3), 663-667. Doi: 10.1016/S0031-9422(00)86958-7

Jiao, W., X. Li, X. Wang, J. Cao, and W. Jiang. 2018. Chlorogenic acid induces resistance against Penicillium expansum in peach fruit by activating the salicylic acid signaling pathway. Food Chem. 260, 274-282. Doi: 10.1016/j.foodchem.2018.04.010

Kar, M. and D. Mishra. 1976. Catalase, peroxidase and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 57(2), 315-319. Doi: 10.1104/pp.57.2.315

Koca, H., M. Bor, F. Özdemir, and I. Türkan. 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ. Exp. Bot. 60(3), 344-351. Doi: 10.1016/j.envexpbot.2006.12.005

Lamichhane, J.R., W. Arendse, S. Dachdrodt-Saaydeh, P. Kudsk, J.C. Roman, J.E.M. Van Bijsterveldt-Gels, M. Wick, and A. Messéan. 2015. Challenges and opportunities for integrated pest management in Europe: a telling example of minor uses. Crop Prot. 74, 42-47. Doi: 10.1016/j.cropro.2015.04.005

Lawlor, D.W. 2002. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J. Exp. Bot. 53(370), 773-787. Doi: 10.1093/jexbot/53.370.773

Liang, Y., M. Nikolic, R. Bélanger, H. Gong, and A. Song. 2015. Silicon in agriculture. Springer, Dordrecht, The Netherlands. Doi: 10.1007/978-94-017-9978-2

Lima, E.S. and D.S.P. Abdalla. 2001. Peroxidação lipídica: mecanismos e avaliação em amostras biológicas. Rev. Bras. Ciênc. Pharm. 37(3), 293-303.

Lorencetti, G.A.T., S.M. Mazaro, M. Potrich, E.R. Lozano, L.R. Barbosa, D. Luckmann, and S. Dallacort. 2015. Produtos alternativos para controle de Thaumastocoris peregrinus e indução de resistência em plantas. Floresta Ambient. 22(4), 541-548. Doi: 10.1590/2179-8087.066913

Mandal, S. 2010. Induction of phenolics, lignin and key defense enzymes in eggplant (Solanum melongena L.) roots in response to elicitors. Afr. J. Biotechnol. 9(47), 8038-8047. Doi: 10.5897/AJB10.984

Mitani, N. and J.F. Ma. 2005. Uptake system of silicon in different plant species. J. Exp. Bot. 56(414), 1255-1261. Doi: 10.1093/jxb/eri121

Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7(9), 405-410. Doi: 10.1016/S1360-1385(02)02312-9

Moya-Elizondo, E.A. and B.J. Jacobsen. 2016. Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (SAR). Biol. Contr. 92, 153-163. Doi: 10.1016/j.biocontrol.2015.10.006

Mulder, E.G., R. Boxma, and W.L. Van Veen. 1959. The effect of molybdenum and nitrogen deficiencies on nitrate reduction in plant tissues. Plant Soil 10(4), 335-355. Doi: 10.1007/BF01666209

Pereira, H.S., G.C. Vitti, and G.H. Korndörfer. 2003. Comportamento de diferentes fontes de silício no solo e na cultura do tomateiro. Rev. Bras. Ciênc. Solo 27(1), 101-108. Doi: 10.1590/S0100-06832003000100011

Ranganathan, S., V. Suvarchala, Y.B.R.D. Rajesh, M. Srinivasa-Prasad, A.P. Padmakumari, and S.R. Voleti. 2006. Effects of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biol. Plant. 50(4), 713-716. Doi: 10.1007/s10535-006-0113-2

Sangeetha, S. and D.V.L. Sarada. 2015. The phenyl derivative of Pyranocoumarin prevents Fusarium oxysporum f.sp. lycopersici infection in Lycopersicon esculentum via the induction of enzymes of the phenylpropanoid pathway. Appl. Biochem. Biotech. 175(2), 1168-1180. Doi: 10.1007/s12010-014-1285-4

Shah, J., R. Chaturvedi, Z. Chowdhury, B. Venables, and R.A. Petros. 2014. Signaling by small metabolites in systemic acquired resistance. Plant J. 79(4), 645-658. Doi: 10.1111/tpj.12464

Shah, J. and J. Zeier. 2013. Long-distance communication and signal amplification in systemic acquired resistance. Front. Plant Sci. 4, 30. Doi: 10.3389/fpls.2013.00030

Siddiqui, Y. and S. Meon. 2009. Effect of seed bacterization on plant growth response and induction of disease resistance in chilli. Agric. Sci. China 8(8), 963-971. Doi: 10.1016/S1671-2927(08)60301-6

Silva, J.M., R.S. Ferreira, A.S. Melo, J.F. Suassuna, A.F. Dutra, and J.P. Gomes. 2013. Cultivo do tomateiro em ambiente protegido sob diferentes taxas de reposição da evapotranspiração. Rev. Bras. Eng. Agríc. Ambient. 17(1), 40-46. Doi: 10.1590/S1415-43662013000100006

Stout, M.J., J. Workman, and S.S. Duffey. 1994. Differential induction of tomato foliar proteins by arthropod herbivores. J. Chem. Ecol. 20(10), 2575-2594. Doi: 10.1007/BF02036193

Taiz, L., E. Zeiger, I.M. Moller, and A. Murphy. 2016. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed, Porto Alegre, Brazil.

Teisseire, H. and V. Guy. 2000. Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Sci. 153(1), 65-72. Doi: 10.1016/S0168-9452(99)00257-5

Teixeira, W.F., E.B. Fagan, L.H. Soares, R.C. Umburanas, K. Reichardt, and D.D. Neto. 2017. Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Front. Plant Sci. 8, 327. Doi: 10.3389/fpls.2017.00327

Umesha, S. 2006. Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica 34(1), 68-71. Doi: 10.1007/BF02981341

Van Bruggen, A.H.C. and M.R. Finckh. 2016. Plant diseases and management approaches in organic farming systems. Annu. Rev. Phytopathol. 54, 25-54. Doi: 10.1146/annurev-phyto-080615-100123

Wang, S.Y. and G.J. Galleta. 1998. Foliar application and potassium silicate induces metabolic changes in strawberry plants. J. Plant Nutrit. 21(1), 157-167. Doi: 10.1080/01904169809365390

Xue, M. and H. Yi. 2017. Induction of disease resistance providing new insight into sulfur dioxide preservation in Vitis vinifera L. Sci. Hortic. 225, 567-573. Doi: 10.1016/j.scienta.2017.07.055

Zaidi, S.S.E.A., M.S. Mukhtar, and S. Mansoor. 2018. Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol. 36, 898-906. 10.1016/j.tibtech.2018.04.005

Zhu, Y. and H. Gong. 2014. Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sustain. Dev. 34, 455-472. Doi: 10.1007/s13593-013-0194-1


Download data is not yet available.