Effects of four ethylene inhibitors on the ripening of coffee (Coffea arabica L.) fruits during the pre-harvest period
Abstract
The natural ripening process in climacteric fruits can be modified by intervening in the mechanisms of ethylene action, either pre-harvest or post-harvest. In some fruits, ethylene inhibitors retard development. In this research, the effect of four ethylene inhibitors on the development of coffee fruits during the pre-harvest period was evaluated. At the Paraguaicito Experiment Station of Cenicafé (04°23’ N and 75°44’ W, Quindío, Colombia) with a coffee crop of the Castillo® Paraguaicito variety, 12 treatments were carried out with four ethylene inhibitors [potassium acetate (0.5, 1.0 and 2.0% P/V), aminooxyacetic acid (1, 5 and 10 mg L-1), salicylic acid (1, 5 and 10 mM) and aminoethoxy- vinyl-glycine (25, 50 y 100 μg L-1)] at three different doses, in addition to an absolute control, using a randomized complete block design. The inhibitors were applied 1 week before the harvest peak, and, 4 weeks later, the variables cherry coffee production, fruit weight, dropped fruits and percentages of immature, early ripe , ripe, and overmature fruits were evaluated. This was done in the main harvest of 2016 and the secondary harvest of 2017. In the main harvest, the treatments aminoethoxy-vinyl-glycine (100 μg L-1) and salicylic acid (1 mM) delayed the ripening process by reducing the percentage of overmature fruits by between 16.0 and 16.6% and by increasing the percentage of ripe fruits by between 12.8 and 14.3%, with respect to the absolute control. In the secondary harvest, the treatments and the control did not differ significantly in any of the evaluated variables.
Keywords
Fruit development, Retardant, Acid salicylic, Aminoethyoxy-vinyl-glycine
Author Biography
Claudia Patricia Flórez
References
- Abeles, F.B., P.W. Morgan y M.E. Saltveit. 1992. Ethylene in plant biology. Academic Press, San Diego, CA.
- Arcila, J. 1975. Efecto del ethephon en la calidad de la bebida del café. Rev. Cenicafé 26(1), 49-52.
- Arcila, J., L. Buhr, H. Bleiholder, H. Hack, U. Meier y H. Wicke. 2002. Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Ann. Appl. Biol. 141(1), 19-27. Doi: 10.1111/j.1744-7348.2002.tb00191.x
- Arora, A. 2008. Biochemistry of flower senescence. pp. 51-85. En: Paliyath, G., D. Murr., A. Handa y S. Lurie (eds.). Postharvest biology and technology of fruits, vegetables, and flowers. Wiley-Blackwell Publishing, New Delhi, India.
- Balaguera, H.E., F.A. Salamanca, J.C. García y A. Herrera. 2014. Etileno y retardantes de la maduración en la poscosecha de productos agrícolas. Una revisión. Rev. Colomb. Cienc. Hortic. 8(2), 302-313. Doi: 10.17584/rcch.2014v8i2.3222
- Berlanga-Reyes, D.I., V.M. Guerrero-Prieto y J.J. Ornelas-Paz. 2011. Productos alternativos a la aminoetoxivinilglicina para el control de la producción de etileno en manzana 'Golden Delicious'. Tecnociencia 5(2), 83-89.
- Burns, J.K. 2008. 1-Methylcyclopropene applications in preharvest systems: focus on citrus. Hortscience 43(1), 112-114.
- Camayo, G.C., B. Chaves, J. Arcila y A. Jaramillo. 2003. Desarrollo floral del cafeto y su relación con las condiciones climáticas de Chinchiná-Caldas. Rev. Cenicafé 54(1), 35-49.
- Champa, W.H., M.I.S. Gill, B.V.C. Mahajan y N.K. Arora. 2015. Preharvest salicylic acid treatments to improve quality and postharvest life of table grapes (Vitis vinifera L.) cv. Flame Seedless. J. Food Sci. Technol. 52(6), 3607-3616. Doi: 10.1007/s13197-014-1422-7
- Dal Cin, V., M. Danesin, A. Botton, A. Boschetti, A. Dorigoni y A. Ramina. 2008. Ethylene and preharvest drop: the effect of AVG and NAA on fruit abscission in apple (Malus domestica L. Borkh). Plant Growth Reg. 56, 317-325. Doi: 10.1007/s10725-008-9312-5
- DaMatta, F.M., C.P. Ronchi, M. Maestri y R.S. Barros. 2007. Ecophysiology of coffee growth and production. Braz. J. Plant Physiol. 19(4), 485-510. Doi: 10.1590/S1677-04202007000400014
- Davies, C. y C. Böttcher. 2014. Other hormonal signals during ripening. pp. 202-216. En: Nath, P., M. Bouzayen, A.K. Mattoo y J.C. Pech. (eds.). Fruit ripening: physiology, signalling and genomics. CABI, Oxfordshire, UK. Doi: 10.1079/9781845939625.0048
- Davis, A.P., J. Tosh, N. Ruch y M.F. Fay. 2011. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea. Bot. J. Linn. Soc. 167(4), 357-377. Doi: 10.1111/j.1095-8339.2011.01177.x
- Dias, R.E.B.A., F.M. da Silva, J.P. Cunha, R.C. Avelar y F.C. Fernandes. 2014. Eficiência da colheita mecanizada do café com uso do inibidor de biossíntese de etileno. Coffee Sci. 9(4), 527-536. Doi: 10.25186/cs.v9i4.746
- Giovannoni, J.J. 2004. Genetic regulation of fruit development and ripening. The plant cell 16(suppl 1), S170-S180. Doi: 10.1105/tpc.019158
- Greene, D.W. 2005. Time of aminoethoxyvinylglycine application influences preharvest drop and fruit quality of ‘McIntosh’ apples. Hortscience 40(7), 2056-2060.
- Guo, H. y J.R. Ecker. 2004. The ethylene signaling pathway: new insights. Curr Opin Plant Biol. 7(1), 40-49. Doi: 10.1016/j.pbi.2003.11.011
- ICO (International Coffee Organization). 2017. Trade statistics tables. En: http://www.ico.org/trade_statistics.asp?section=Statistics; consulta: Septiembre de 2017.
- Karlidag, H., E. Yildirim y M. Turan. 2009. Exogenous applications of salicylic acid affect quality and yield of strawberry grown under antifrost heated greenhouse conditions. J. Plant Nutr. Soil Sci. 172(2), 270-276. Doi: 10.1002/jpln.200800058
- Kesari, R., P. Trivedi y P. Nath. 2007. Ethylene-induced ripening in banana evokes expression of defense and stress related genes in fruit tissue. Postharvest Biol. Technol. 46(2), 136-143. Doi: 10.1016/j.postharvbio.2007.04.010
- Kraeva, E., C. Andary, A. Carbonneau y A. Deloire. 1998. Salicylic acid treatment of grape berries retards ripening. Vitis 37(3), 143-144.
- Lelièvre, J.M., A. Latchè, B. Jones, M. Bouzayen y J.C. Pech. 1997. Ethylene and fruit ripening. Physiol. Plant. 101(4), 727-739. Doi: 10.1111/j.1399-3054.1997.tb01057.x
- Leslie, C.A. y R.J. Romani. 1988. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol. 88, 833-837. Doi: 10.1104/pp.88.3.833
- Marín, S.M., J. Arcila, E.C. Montoya y C.E. Oliveros. 2003. Relación entre el estado de madurez del fruto del café y las características de beneficio, rendimiento y calidad de la bebida. Rev. Cenicafé 54(4), 297-315.
- Pereira, L.F.P., R.M. Galvao, A.K. Kobayashi, S.M.B. Cação y V.L.G. Esteves. 2005. Ethylene production and acc oxidase gene expression during fruit ripening of Coffea arabica L. Braz. J. Plant Physiol. 17(3), 283-289. Doi: 10.1590/S1677-04202005000300002
- Pezzopane, J.R.M., T.D.J.G. Salva, V.B. de Lima y L.C. Fazuoli. 2012. Agrometeorological parameters for prediction of the maturation period of Arabica coffee cultivars. Int. J. Biometeorol. 56(5), 843-851. Doi: 10.1007/s00484-011-0486-6
- Puerta, G.I. 2000. Influencia de los granos de café cosechados verdes, en la calidad física y organoléptica de la bebida. Rev. Cenicafé 51(2), 136-150.
- Ságio, S.A., A.A. Lima, H.G. Barreto, C.H.S. de Carvalho, L.V. Paiva y A. Chalfun-Junior. 2013. Physiological and molecular analyses of early and late Coffea arabica cultivars at different stages of fruit ripening. Acta Physiol. Plant. 35(11), 3091-3098. Doi: 10.1007/s11738-013-1342-6
- Saltveit, M.E. 1999. Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol. Technol. 15(3), 279-292. Doi: 10.1016/S0925-5214(98)00091-X
- SAS Institute. 2012. The SAS system for Windows. Release 9.4. Cary, NC.
- Serek, M., E.J. Woltering, E.C. Sisler, S. Frello y S. Sriskandarajah. 2006. Controlling ethylene responses in flowers at the receptor level. Biotechnol. Adv. 24(4), 368-381. Doi: 10.1016/j.biotechadv.2006.01.007
- Silva, R.A., S.N. Matsumoto, G. Marques, P.N. de Oliveira y L.S. de Oliveira. 2013. Efeito do Mathury® na maturação de frutos de café variedade Catuaí Vermelho. Cascavel 6(3), 66-74.
- Srivastava, K.M. y U.N. Dwivedi. 2000. Delayed ripening of banana fruit by salicylic acid. Plant Sci. 158(1), 87-96. Doi: 10.1016/S0168-9452(00)00304-6
- Stroup, W.W. 2015. Rethinking the analysis of non-normal data in plant and soil science. Agron. J. 107(2), 811-827. Doi: 10.2134/agronj2013.0342
- Upegui, G. y G. Valencia. 1972. Anticipación de la maduración de la cosecha de café, con aplicaciones de Ethrel. Rev. Cenicafé 23(1), 19-26.
- Wang, Y.Y., B.Q. Li, G.Z. Qin, L. Li y S.P. Tian. 2011. Defense response of tomato fruit at different maturity stages to salicylic acid and ethephon. Sci. Hortic. 129(2), 183-188. Doi: 10.1016/j.scienta.2011.03.021
- Wills, R. y M. Warton. 2004. Efficacy of potassium permanganate impregnated into alumina beads to reduce atmospheric ethylene. J. Am. Soc. Hortic. Sci. 129(3), 433-438.
- Winston, E.C., M. Hoult, C.J. Howitt y R.K. Shepherd. 1992. Ethylene-induced fruit ripening in arabica coffee (Coffea arabica L.). Aust. J. Exp. Agr. 32(3), 401-408. Doi: 10.1071/EA9920401
- Yildiz, K., B. Ozturk e Y. Ozkan. 2012. Effects of aminoethoxyvinylglycine (AVG) on preharvest fruit drop, fruit maturity, and quality of ‘Red Chief’ apple. Sci. Hort. 144, 121-124. Doi: 10.1016/j.scienta.2012.07.005