Salt water and silicon application on growth, chloroplastid pigments, chlorophyll fluorescence and beet production

Authors

DOI:

https://doi.org/10.17584/rcch.2019v13i3.8489

Keywords:

Beta vulgaris L., Abiotic stress, Potassium silicate, Photosynthesis

Abstract

In recent years, the use of saline water in agriculture has become an alternative mainly because of water scarcity. However, plants do not tolerate high salt contents; so, the use of salt stress attenuators could enable saline water usage in agriculture. This study aimed to assess the effect of saline water and silicon applications on growth, chloroplastid pigments, chlorophyll fluorescence a and beet production. The experiment was conducted with complete randomized blocks in a 5 x 5 combined factorial arrangement according to the Central Composite of Box experiment matrix for the electrical conductivity in the irrigation water (ECw) and silicon doses (Si), with minimum (- α) and maximum (α) values from 0.5 to 6.0 dS m-1 and from 0.00 to 18.16 mL L-1, totaling nine treatments, with four replicates and three plants per plot. The irrigation water ECw increase reduced growth and beet production, but the chlorophyll contents, biomass and fluorescence production were not affected by salinity. Silicon applications via the soil increased growth and chlorophyll fluorescence a but did not reduce the harmful effect of the salt stress. The irrigation water ECw above 0.50 dS m-1 negatively affected the beet crop. The silicon dose of 9.08 mL L-1 is the most recommended application.

JEL Classification

Array

Downloads

Download data is not yet available.

References

Bae, E.J., K.S. Lee, M.R. Huh, and C.S. Lim. 2012. Silicon significantly alleviates the growth inhibitory effects of NaCl in salt-sensitive ‘Perfection’and ‘Midnight’Kentucky bluegrass (Poa pratensis L.). Hortic. Environ. Biotechnol. 53(6), 477-483. Doi: 10.1007/s13580-012-0094-3

Bernardo, S., A.A. Soares, and I.E.C. Mantovan. 2008. Manual de irrigação. 8. ed. Ed. UFV, Viçosa, Brazil.

Bertazzini, M., G.A. Sacchi, and G.A. Forlani. 2018. Differential tolerance to mild salt stress conditions among six Italian rice genotypes does not rely on Na+ exclusion from shoots. J. Plant Physiol. 226, 145-153. Doi: 10.1016/j.jplph.2018.04.011

Cantuário, F.S., J.M.Q. Luz, A.I.A. Pereira, L.C. Salomão, and T.N.H. Rebouças. 2014. Podridão apical e escaldadura em frutos de pimentão submetidos a estresse hídrico e doses de silício. Hort. Bras. 32, 215-219. Doi: 10.1590/S0102-05362014000200017

Castellanos, C.I., M.P.D. Rosa, C. Deuner, A. Bohn, A. C. Barros, and G.E. Meneghello. 2016. Aplicação ao solo de cinza de casca de arroz como fonte de silício: efeito na qualidade de sementes de trigo produzidas sob stresse salino. Rev. Ciênc. Agrár. 39(1), 95-104. Doi: 10.19084/RCA15011

Cody, R. 2015. An introduction to SAS. SAS Institute, Cary, NC.

Dias, N.S. and F.F. Blanco. 2010. Efeito dos sais no solo e na planta. In: Gheyi, H.R., N.S. Dias, and C.F. Lacerda (eds). Manejo da salinidade na agricultura: estudos básicos e aplicados. INCT Sal, Fortaleza, Brazil.

EMBRAPA, Empresa Brasileira de Pesquisa Agropecuária. 2014. Sistema Brasileiro de Classificação de Solo. 4. ed. Embrapa Solos, Brasilia.

Filgueira, F.A.R. 2008. Novo manual de olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças. 2.ed. UFV, Viçosa, Brazil.

Fraire-Velázquez, S. and V.E. Balderas-Hernández. 2013. Abiotic stress in plants and metabolic responses. pp. 25-48. In: Vahdati, K. and C. Leslie. (Org.). Abiotic stress-plant responses and applications in agriculture. IntechOpen, London. Doi: 10.5772/54859

Heckman, J. 2013. Silicon: a beneficial substance. Better Crops 97(4), 14-16.

Huang, Z., X. Long, L. Wang, J. Kang, Z. Zhang, R. Zed, and Z. Liu. 2012. Growth, photosynthesis and H+-ATPase activity in two Jerusalem artichoke varieties under NaCl-induced stress. Process Biochem. 47(4), 591-596. Doi: 10.1016/j.procbio.2011.12.016

IPA, Instituto Agronômico de Pernambuco. 2008. Recomendação de adubação para o Estado de Pernambuco: 2° aproximação. 3.ed. Instituto Agronômico de Pernambuco, Recife, Brazil.

Lima, G.S., R.G. Nobre, H.R. Gheyi, L.A. Anjos Soares, and A.O. Silva. 2014. Cultivo da mamoneira sob estresse salino e adubação nitrogenada. Eng. Agríc. 34(5), 854-866. Doi: 10.1590/S0100-69162014000500005

Mantovani, E.C., S. Bernardo, and L.F. Palaretti. 2009. Irrigação: princípios e métodos. Ed. UFV, Viçosa, Brazil.

Mateus, N.B., D. Barbin, and A. Conagin. 2001. Viabilidade de uso do delineamento composto central. Acta Sci. Agron. 23 (6), 1537-1546.

Oliveira, A.M.P., A.D. Oliveira, N.D.S. Dias, M. Freitas, and K.D. Silva. 2012. Cultivo de rabanete irrigado com água salina. Rev. Verde Agroec. Des. Sust. 7, 01-05.

Pedrotti, A., R.M. Chagas, V.C. Ramos, A.P. Nascimento Prata, A.A. T. Lucas, and P.B. Santos. 2015. Causas e consequências do processo de salinização dos solos. Rev. Elet. Gest. Ed. Tec. Amb. 19(2), 1308-1324.

Reis, M., J.R.M. Figueiredo, R. Paiva, D.P. Silva, C.V.N. Faria, and L. Rouhana. 2016. Salinity in rose production. Ornam. Hortic. 22(2), 228-234. Doi: 10.14295/oh.v22i2.904

Rezende, R.A.L.S., F.A. Rodrigues, J.D.R. Soares, H.R.D.O. Silveira, M. Pasqual, and G.D.M.G. Dias. 2018. Salt stress and exogenous silicon influence physiological and anatomical features of in vitro-grown cape gooseberry. Ciên. Rur. 48(1), 1-9. Doi: 10.1590/0103-8478cr20170176

Richards, L.A. 1954. Diagnóstico e rehabilitación de suelos salinos e sódicos. Editorial Limusa, México DF.

Sá, F.V.S., M.E.B. Brito, L.A. Silva, R.C.L. Moreira, P.D. Fernandes, and L.C. Figueiredo. 2015. Fisiologia da percepção do estresse salino em híbridos de tangerineira - Sunki Comum sob solução hidropônica salinizada. Com. Sci 6(4), 463-470. Doi: 10.14295/cs.v6i4.1121

Sahebi, M., M. M. Hanafi, and P. Azizi. 2016. Application of silicon in plant tissue culture. In Vitro Cell. Dev. Biol.-Plant 52(3), 226-232. Doi: 10.1007/s11627-016-9757-6

Santos, D.P., C.S. Santos, P.F. Silva, M.P.M.A. Pinheiro, and J.C. Santos. 2016. Crescimento e fitomassa da beterraba sob irrigação suplementar com água de diferentes concentrações salinas. Ceres 63(4), Doi: 10.1590/0034-737X201663040011

Shi, Y., Y. Wang, T.J. Flowers, and H. Gong. 2013. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J. Plant Physiol. 170(9), 847-853. Doi: 10.1016/j.jplph.2013.01.018

Silva, A.O.D., A.E. Klar, E.F.D.F. Silva, A.A. Tanaka, S. Junior, and F. Josué. 2013. Relações hídricas em cultivares de beterraba em diferentes níveis de salinidade do solo. Rev. Bras. Eng. Agríc. Ambient. 17(10), 1143-1151. Doi: 10.1590/S1415-43662013001100003

Silva, A.O.D., Ê.F. Silva, and A.E. Klar. 2015. Manejo da fertirrigação e salinidade do solo no crescimento da cultura da beterraba. Eng. Agríc. 35(2), 230-241. Doi: 10.1590/1809-4430-Eng.Agric.v35n2p230-241/2015

Simões. W.L., M.A. Souza, J.E. Yuri, M.M. Guimarães, and V.H. Gomes. 2016. Desempenho de cultivares de beterrabas submetidas a diferentes lâminas de irrigação no Submédio São Francisco. Water Res. Irrig. Managem. 5(2), 51-57.

Syvertsena, J.P. and F. Garcia-Sanchez. 2014. Multiple abiotic stresses occurring with salinity stress in citrus. Environ Exp Bot. 103(1), 128-137. Doi: 10.1016/j.envexpbot.2013.09.015

Tahir, M.A., T. Aziz, M. Farooq, and G. Sarwar. 2012. Silicon-induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt-stressed wheat genotypes. Arch. Agron. Soil Sci. 58(3), 247-256. Doi: 10.1080/03650340.2010.518959

Yin, L., S. Wang, J. Li, K. Tanaka, and M. Oka. 2013. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol. Plant. 35(11), 3099-3107. Doi: 10.1007/s11738-013-1343-5
Beet experiment view. Photo: M.L.M. Véras

Downloads

Published

2019-09-01

How to Cite

Melo-Filho, J. S. de, Silva, T. I. da, Gonçalves, A. C. de M., Sousa, L. V. de, Véras, M. L. M., & Dias, T. J. (2019). Salt water and silicon application on growth, chloroplastid pigments, chlorophyll fluorescence and beet production. Revista Colombiana De Ciencias Hortícolas, 13(3), 406–415. https://doi.org/10.17584/rcch.2019v13i3.8489

Issue

Section

Vegetable section

Metrics

Most read articles by the same author(s)