Agronomic performance and gaseous exchanges of the radish under saline stress and ascorbic acid application
Main Article Content
Autores
Ygor Henrique Leal
Leonardo Vieira de Sousa

Toshik Iarley da Silva

Joana Gomes de Moura

Ana Gabriela Sousa Basílio

José Sebastião de Melo Filho

Anderson Carlos de Melo Gonçalves

Thiago Jardelino Dias

Abstract
The radish is a short-cycle vegetable that has excellent nutritional and medicinal properties. It is considered rustic, meaning it tolerates adverse conditions with the possibility of being irrigated with saline water, which creates stress. In this context, this study aimed to evaluate the effect of electrical conductivities in irrigation water and doses of ascorbic acid on the agronomic performance and gaseous exchanges of radishes. This experiment was carried out in a protected environment at the Agricultural Sciences Center of the Federal University of Paraíba, Areia, Paraíba (Brazil). The experiment design used randomized blocks with five doses of ascorbic acid (0.0, 0.29, 1.0, 1.71 and 2.0 mM) and five electrical conductivities in the irrigation water (0.5, 1.3, 3.25, 5.2 and 6.0 dS m-1), with four replicates. The growth, gas exchange and production were evaluated. The doses of ascorbic acid were not significant. The increase in the electrical conductivities of the irrigation water provided a reduction in the agronomic performance and gas exchanges, except for the net photosynthesis, water use efficiency and instantaneous carboxylation efficiency, which were not significant. There was a relationship between the net photosynthesis, transpiration, internal concentration of CO2 and water use efficiency and the stomatal conductance. The agronomic performance and gaseous exchanges of the radish culture were influenced by the salinity. The foliar application of ascorbic acid did not influence the agronomic yield and gaseous exchanges of the radishes at the tested doses.
Article Details
Licence

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.
References
Barboza, G.C. and J. Teixeira Filho. 2017. Transpiração foliar e condutância estomática da cana-de-açúcar em função do clima e disponibilidade de água. Irriga 22(4), 675-689. Doi: 10.15809/irriga.2017v22n4p675-689
Benincasa, MMP. 2003. Análise de crescimento de plantas: noções básicas. FUNEP, Jaboticabal, São Paulo, Brazil.
Bortoluzzi, A.L. and V.V.H. Alvarez. 1997. Pesquisa em casa de vegetação e em campo: matrizes experimentais. Departamento do Solo/CCA – Universidade Federal de Viçosa, Viçosa, Brazil.
Brunes, A.P., D.A.R. Fonseca, C.A. Rufino, L.C. Tavares, L.M. Tunes, and F.A Villela. 2013. Seedling growth of white oats submitted to salt stress. Semina: Cienc. Agrár. 34(6), 3455-3462. Doi: 10.5433/1679-0359.2013v34n6Supl1p3455
Cody, R. 2015. An introduction to SAS University Edition. SAS Institute, Cary, NC.
Cunha, F.F., M.A. Castro, A.R. Godoy, F.F. Magalhães, and A.J.F. Leal. 2017. Irrigação de cultivares de rabanete em diferentes épocas de cultivo no nordeste sul-mato-grossense. Irriga 22(3), 530-546. Doi: 10.15809/irriga.2017v22n3p530-546
Eschemback, V., M.R. Bernert, A. Jadoski, S.O. Suchoronczek, and A.S. Lima. 2014. Características da Salinidade dos solos em cultivos agrícolas no Brasil. Appl. Res. Agrotechnol. 7(3), 115-124.
Ferreira, E.A., I.A. Aspiazú, L.L. Galon, G.C. Concenço, A.F. Silva, L.A.C. Reis, and F.P. Carvalho. 2011. Características fisiológicas da soja e espécies de plantas daninhas. Rev. Tróp. - Ciênc. Agrár. Biol. 5(1), 39-47.
Gul, H., R. Ahmad, and M. Hamayun. 2015. Impact of exogenously applied ascorbic acid on growth, some biochemical constituents and ionic composition of guar (Cymopsis Tetragonoloba) subjected to salinity stress. Pakhtunkhwa J. Life Sci. 3(1-2), 22-40.
Hameed, A., S. Gulzar, I. Aziz, T. Hussain, B. Gul, and M.A. Khan. 2015. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants 7, plv004. Doi: 10.1093/aobpla/plv004
Lanna, N.B.L., P.N.L. Silva, L.F. Colombari, C.V. Corrêa, and A.I.I. Cardoso. 2018. Residual effect of organic fertilization on radish production. Hort. Bras. 36(1), 47-53. Doi: 10.1590/s0102-053620180108
Lima, G.S., H.R. Gheyi, R.G. Nobre, L.A.A. Soares, P.D. Fernandes, and G.F. Furtado. 2017. Trocas gasosas, pigmentos cloroplastídicos e dano celular na mamoneira sob diferentes composições catiônica da água. Rev. Irriga 22(4), 757-774. Doi: 10.15809/irriga.2017v22n4p757-774
Medeiros, J.F. 1992. Qualidade da água de irrigação utilizada nas propriedades assistidas pelo “GAT” nos Estados do RN, PB, CE e avaliação da salinidade dos solos. 1992. 173f. MSc thesis. University of Campina Grande, Campina Grande, Brazil.
Mekawy, A.M., D.V. Assaha, H. Yahagi, Y. Tada, A. Ueda, and H. Saneoka. 2015. Growth, physiological adaptation, and gene expression analysis of two Egyptian rice cultivars under salt stress. Plant Physiol. Biochem. 87, 17-25. Doi: 10.1016/j.plaphy.2014.12.007
Oliveira, A.M.P., A.D. Oliveira, N.S. Dias, M. Freitas, and K.B. Silva. 2012. Cultivo de rabanete irrigado com água salina. Rev. Verde Agroecol. Desenvolv. Sustent. 7(4), 1-5.
Oliveira, F.R.A., F.A. Oliveira, J.F. Medeiros, V.F.L. Sousa, and A.G. Freire. 2010. Interação entre salinidade e fósforo na cultura do rabanete. Rev. Ciênc. Agron. 41(4), 519-526. Doi: 10.1590/S1806-66902010000400003
Parihar, P., S. Singh, R. Singh, V.P. Singh, and S.M. Prasad. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environ. Sci. Pollut. Res. 22(6), 4056-4075. Doi: 10.1007/s11356-014-3739-1
Peloso, A.F., S.D. Tatagiba, E.F. Reis, J.E.M. Pezzopane, and J.F.T. Amaral. 2017. Limitações fotossintéticas em folhas de cafeeiro arábica promovidas pelo déficit hídrico. Coffee Sci. 12(3), 389-399.
Santos, M.R. and C.F.B. Brito. 2016. Irrigação com água salina, opção agrícola consciente. Rev. Agrotecnol 7(1), 33-41. Doi: 10.12971/2179-5959/agrotecnologia.v7n1p33-41
Santos, R.A., P.T. Carneiro, V.R. Santos, L.C. Costa, C.G. Santos, and A.L. Santos Neto. 2014. Crescimento de leguminosas utilizadas na adubação verde em diferentes níveis de sais na água de irrigação. Rev. Bras. Eng. Agric. Ambient. 18(12), 1255-1261. Doi: 10.1590/1807-1929/agriambi.v18n12p1255-1261
Santos, G.P., L.F. Cavalcante, J.A.M. Nascimento, M.E.B. Brito, T.A.G. Dantas, and J.A. Barbosa. 2012. Produção de pitangueira utilizando adubação organomineral e irrigação com água salina. Irriga 17(4), 510-522. Doi: 10.15809/irriga.2012v17n4p510
Santos, D.P., C.S. Santos, P.F. Silva, M.P.M.A. Pinheiro, and J.C. Santos. 2016. Crescimento e fitomassa da beterraba sob irrigação suplementar com água de diferentes concentrações salinas. Rev. Ceres 63(4), 509-516. Doi: 10.1590/0034-737X201663040011
Santos, V.M., L.L. Silva, P.C. Ramos, S.C. Siebeneichler, D.P. Cardoso, and A.R. Silva. 2017. Análise do crescimento de rabanete em função de períodos de convivência com plantas daninhas. Rev. Bras. Agropec. Sustent. 5(1), 121-129.
Silva, A.O., T.M. Soares, Ê.F.F. Silva, A.N. Santos, and A.E. Klar. 2012. Consumo hídrico da rúcula em cultivo hidropônico NFT utilizando rejeitos de dessalinizador em Ibimirim-PE. Irriga 17(1), 114-125. Doi: 10.15809/irriga.2012v17n1p114
Sousa, J.R.M., H.R. Gheyi, M.E.B. Brito, D.A. Xavier, and G.F. Furtado. 2016b. Impact of saline conditions and nitrogen fertilization on citrus production and gas exchanges. Rev. Caatinga 29(2), 415-424. Doi: 10.1590/1983-21252016v29n218rc
Sousa, G.G., V.S. Rodrigues, T.V.A. Viana, G.L. Silva, M.O. Rebouças Neto, and B.M. Azevedo. 2016a. Irrigação com água salobra na cultura do rabanete em solo com fertilizantes orgânicos. Rev. Bras. Agric. Irrigada 10(6), 1065-1074. Doi: 10.15809/irriga.2012v17n1p114
Srivastava, V., R.P. Singh, P. Singh, and K. Verna. 2016. Varietal germination, biochemical and growth responses of radish (Raphanus sativus L.) grown under different level of salt stress. In: Ashraf, M.A. and W.S. Aqma (eds.). International Conference on Clean Water, Air & Soil (CleanWAS 2015). Vol: Envionmental Conservation, Clean Water, Air & Soil (CleanWas), IWA Publishing, London.
Sun, X., L. Xu, Y. Wang, X. Luo, X. Zhu, K.B. Kinuthia, S. Nie, H. Feng, C. Li, and L. Liu. 2016. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Plant Cell Rep. 35(2), 329-346. Doi: 10.1007/s00299-015-1887-5
Taiz, L., E. Zeiger, I.M. Moller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed Editora, Porto Alegre, Brazil.
Tatagiba, S.D., J.E.M. Pezzopane, and E.F. Reis. 2015. Fotossíntese em Eucalyptus sob diferentes condições edafoclimáticas. Eng. Agric. 23(4), 336-345. Doi: 10.13083/1414-3984/reveng.v23n4p336-345
Witkowski, E.T.F. and B.B. Lamont. 1991. Leaf specific mass confounds leaf density and thickness. Oecologia 88(4), 486-493. Doi: 10.1007/BF00317710