Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Composición y abundancia de especies de malezas en relación a variables fisicoquímicas del suelo en el cultivo de durazno Prunus persica L. var. Rubidoux

Weed landscape in a peach crop. Photo: F.-E. Forero-Ulloa

Resumen

Las malezas se consideran las principales limitaciones biológicas para la producción y la sostenibilidad de un sistema agrícola. Esto se debe a la capacidad de las malezas para modificar las condiciones fisicoquímicas del suelo (i.e., nutrientes, pH, materia orgánica). Es por esta razón que tener información sobre las características fisicoquímicas del suelo dentro del cultivo permite observar aspectos ecológicos y de distribución de especies de malezas. El objetivo de este estudio fue determinar la composición y frecuencia de especies de malezas y su relación con variables fisicoquímicas del suelo en cultivo de durazno Prunus persica L var. Rubidoux. Para determinar la composición y frecuencia de las especies de malas hierbas en relación con las variables fisicoquímicas del suelo en el cultivo de durazno, se analizaron un total de 20 cuadrantes de 10×10 m dentro del cultivo de 2 ha de durazno. Las especies de malezas fueron identificadas taxonómicamente. Se realizó una caracterización fisicoquímica del suelo en cada cuadrante. Se registraron un total de 13 especies de malezas, distribuidas en 10 familias y 8 órdenes, siendo la familia Asteraceae la más representativa. Adicionalmente, se encontraron variaciones fisicoquímicas en las muestras de suelo en el cultivo de durazno. Los datos del suelo se contrastaron con los patrones de distribución y frecuencia de las especies de malezas. Algunas especies de malezas no estaban relacionadas individualmente con las variables fisicoquímicas del suelo. Nuestros resultados apoyan los esfuerzos para continuar explorando cómo las variaciones de las condiciones fisicoquímicas del suelo dentro de un cultivo pueden modular los patrones de distribución de las especies de malezas.

Palabras clave

Diversidad, Flora de malezas, Fertilización, Muestreo

PDF (English)

Referencias

Allan, E., P. Manning, F. Alt, J. Binkenstein, S. Blaser, N. Blüthgen, S. Böhm, F. Grassein, N. Hölzel, V.H. Klaus, T. Kleinebecker, E.K. Morris, Y. Oelmann, D. Prati, S.C. Renner, M. C. Rillig, M. Schaefer, M. Schloter, B. Schmitt, I. Schöning, M. Schrumpf, E. Solly, E. Sorkau, J. Steckel, I. Steffen‐Dewenter, B. Stempfhuber, M. Tschapka, C.N. Weiner, W.W. Weisser, M. Werner, C. Westphal, W. Wilcke, and M. Fischer. 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18(8), 834-843. Doi: 10.1111/ele.12469

Barzman, M., A. Paolo Bàrberi, N.E. Birch, P.B. Silke, D. Saaydeh, B. Graf, B. Hommel, J.E. Jensen, J. Kiss, P. Kudsk, J.R. Lamichhane, A. Messéan, A.C. Moonen, A. Ratnadass, P. Ricci, J.L. Sarah, and M. Sattin. 2015. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199-1215. Doi: 10.1007/s13593-015-0327-9

Bengtsson, J., J. Ahnström, and A.C. Weibull. 2005. The effects of organic agriculture on biodiversity and abundance: a meta‐analysis. J. Appl. Ecol. 42, 261-269. Doi: 10.1111/j.1365-2664.2005.01005.x

Bernal, R., S.R. Gradstein, and M. Celis. 2019. Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, in: http://catalogoplantasdecolombia.unal.edu.co; consulted: January, 2021.

Berner, A., I. Hildermann, A. Fliessbach, L. Pfiffner, U. Niggli, and P. Mäder. 2008. Crop yield and soil fertility response to reduced tillage under organic management. Soil Till. Res. 101(1-2), 89-96. Doi: 10.1016/j.still.2008.07.012

Bilalis, D., A. Karkanis, A. Pantelia, S. Patsiali, A. Konstantas, and A. Efthimiadou. 2012. Weed populations are affected by tillage systems and fertilization practices in organic flax (Linum usitatissimum L.) crop. Aust. J. Crop Sci. 6(1), 157-163.

Bilalis, D., P. Papastylianou, A. Konstantas, S. Patsiali, A. Karkanis, and A. Efthimiadou. 2010. Weed-suppressive effects of maize-legume intercropping in organic farming. Int. J. Pest Manage. 56(2), 173-181, Doi: 10.1080/09670870903304471

Blackshaw, R.E., L.J. Molnar, and F.J. Larney. 2005. Fertilizer, manure and compost effects on weed growth and competition with winter wheat in western Canada. Crop Prot. 24(11), 971-980. Doi: 10.1016/j.cropro.2005.01.021

Bonham, C.D. 2013. Measurements for terrestrial vegetation. John Wiley & Sons, Oxford, UK. Doi: 10.1002/9781118534540

Buhler, D.D. 1995. Influence of tillage systems on weed population dynamics and management in corn and soybean in the Central USA. Crop Sci. 35, 1247-1258. Doi: 10.2135/cropsci1995.0011183X003500050001x

Cheimona, N., C. Angeli, E. Panagiotou, A. Tzanidaki, C. Drontza, I. Travlos, and D. Bilalis. 2016. Effect of different types of fertilization on weed flora in processed tomato crop. Procedia: Agric. Agric. Sci. 10, 26-31. Doi: 10.1016/j.aaspro.2016.09.005

Coffman, C.B. and J.R. Frank. 1992. Corn‐weed interactions with long‐term conservation tillage management. Agron. J. 84, 17-21. Doi: 10.2134/agronj1992.00021962008400010004x

Cousens, R. and M. Mortimer. 1995. Dynamics of weed populations. Cambridge University Press, Cambridge, UK. Doi: 10.1017/CBO9780511608629

Davis, A. 2007. Nitrogen fertilizer and crop residue effects on seed mortality and germination of eight annual weed species. Weed Sci. 55, 123-128. Doi: 10.1614/WS-06-133.1

Fried, G., L.R. Norton, and X. Reboud. 2008. Environmental and management factors determining weed species composition and diversity in France. Agric. Ecosyst. Environ. 128(1-2), 68-76. Doi: 10.1016/j.agee.2008.05.003

González, I., S. Déjean, P. Martin, and A. Baccini. 2008. CCA: An R package to extend canonical correlation analysis. J. Stat. Softw. 23, 1-14. Doi: 10.18637/jss.v023.i12

Gough, L., C.W. Osenberg, K.L. Gross, and S.L. Collins. 2000. Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89, 428-439. Doi: 10.1034/j.1600-0706.2000.890302.x

Grey, T., T. Webster, X. Li, W. Anderson, and G. Cutts. 2015. Evaluation of control of napiergrass (Pennisetum purpureum) with tillage and herbicides. Invasive Plant Sci. Manage. 8(4), 393-400. Doi: 10.1614/IPSM-D-15-00012.1

Gu, Q.Z., X.Y. Yang, B.H. Sun, S.L. Zhang, and Y.A. Tong. 2007. Ying yong sheng tai xue bao. J. Appl. Ecol. 18(5), 1038-1042.

Huang, S., X. Pan, Y. Sun, Y. Zhang, X. Hang, X. Yu, and W. Zhang. 2013. Fertilization and paddy weeds. Weed Biol. Manage. 13, 10-18. Doi: 10.1111/wbm.12004

Hyvönen, T., E. Ketoja, J. Salonen, H. Jalli, and J. Tiainen. 2003. Weed species diversity and community composition in organic and conventional cropping of spring cereals. Agric. Ecosyst. Environ. 97(1-3), 131-149. Doi: 10.1016/S0167-8809(03)00117-8

IGAC, Instituto Geográfico Agustín Codazzi. 2006. Métodos analíticos del laboratorio de suelos. Bogota.

IPNI, International Plant Names Index. 2021. Database, The Royal Botanic Gardens; Kew, Harvard University Herbaria & Libraries and Australian National Botanic Gardens, http://www.ipni.org; consulted: January, 2020.

Labrada, R. and P. Paper. 2003. Present trends in weed management. FAO Plant Production and Protection Paper (FAO). Rome.

Little, N., C. Mohler, Q. Ketterings, and A. DiTommaso. 2015. Effects of organic nutrient amendments on weed and crop growth. Weed Sci. 63(3), 710-722. Doi: 10.1614/ws-d-14-00151.1

Lorena Gámez, A., E. Carolina Cruz, G. Plaza, J. Cepeda, L. Rojas, M. Jaramillo, and V. Hoyos. 2018. Guía Ilustrada de plantas arvenses del Centro Agropecuario Marengo (CAM), Universidad Nacional de Colombia, Bogota.

Mbong, E., S. Osu, D. Uboh, and I. Ekpo. 2020. Abundance and distribution of species in relation to soil properties in sedge-dominated habitats in Uyo Metropolis, Southern Nigeria. Global J. Ecol. 5, 24-29. 10.17352/gje.000015

Melander, B., N. Munier-Jolain, R. Charles, J. Wirth, J. Schwarz, R. van der Weide, L. Bonin, P. K. Jensen, and P. Kudsk. 2013. European perspectives on the adoption of nonchemical weed management in reduced-tillage systems for arable crops. Weed Technol. 27(1), 231-240. Doi: 10.1614/WT-D-12-00066.1

Murphy, C.E. and D. Lemerle. Continuous cropping systems and weed selection. Euphytica 148, 61-73. 2006. Doi: 10.1007/s10681-006-5941-9

Ni, N.T., S. Zhang, B. Sun, H. Yi, and X. Yang. 2017. Long-term diverse fertilizer management on weed species and communities in winter wheat field. Am. J. Plant Sci. 8(8), 1790-1800. Doi: 10.4236/ajps.2017.88122

Nichols, V., N. Verhulst, R. Cox, and B. Govaerts. 2015. Weed dynamics and conservation agriculture principles: A review. Field Crops Res. 183, 56-68. Doi: 10.1016/j.fcr.2015.07.012

Ogbemudia, F. and E. Mbong. 2013. Studies on some pedological indices, nutrient flux pattern and plant distribution in Metropolitan Dumpsites in Uyo, Akwa Ibom state. Indian J. Pharm. Biol. Res. 1(02), 40-45. Doi: 10.30750/ijpbr.1.2.8

Okezie Akobundu, I. and C. Agyakwa. 1998. A handbook of west African weeds. 2nd ed. Revised and Expanded. International Institute of Tropical Agriculture, Ibadan, Nigeria.

Oksanen, J., R. Kindt, P. Legendre, B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, and H. Wagner. 2013. Vegan: Community ecology package. R package version 2.3-5. In: http://CRAN.R-project.org/package=vegan; consulted: June, 2021.

Pakeman, R.J., R.W. Brooker, A.J. Karley, A.C. Newton, C. Mitchell, R.L. Hewison, J. Pollenus, D.C. Guy, and C. Schöb. 2020. Increased crop diversity reduces the functional space available for weeds. Weed Res. 60, 121-131. Doi: 10.1111/wre.12393

Pinke, G., P. Karácsony, B. Czúcz, Z. Botta‐Dukát, and A. Lengyel. 2012. The influence of environment, management and site context on species composition of summer arable weed vegetation in Hungary. Appl. Veg. Sci. 15, 136-144. Doi: 10.1111/j.1654-109X.2011.01158.x

Power, A.G. 2010. Ecosystem services and agriculture: tradeoffs and synergies Phil. Trans. R. Soc. B. 365, 2959-2971. Doi: 10.1098/rstb.2010.0143

Puente, G.A. and A. Castro. 2012. Ciruelo y duraznero. pp. 370-392. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.

Rassam, G., N. Latifi, A. Soltani, and B. Kamkar. 2011. Impact of crop management on weed species diversity and community composition of winter wheat fields in Iran. Weed Biol. Manage. 11, 83-90. Doi: 10.1111/j.1445-6664.2011.00407.x

Santín-Montanyá, M.I., D. Martín-Lammerding, I. Walter, E. Zambrana, and J.L. Tenorio. 2013. Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J Agron. 48, 43-49. Doi: 10.1016/j.eja.2013.02.006

Seppelt, R., S. Lautenbach, and M. Volk. 2013. Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Curr. Opin. Environ. Sustain. 5(5), 458-463. Doi: 10.1016/j.cosust.2013.05.002

Sheley, R.L., J.J. James, M.J. Rinella, D.M. Blumenthal, and J.M. DiTomaso. 2011. Invasive plant management on anticipated conservation benefits: a scientific assessment. pp. 291-336. In: Briske, D.D. (ed.). Conservation benefits of rangeland practices: Assessment, recommendations, and knowledge gaps. USDA Natural Resources Conservation Service, Lawrence, KS.

Smith, R.G., D.A. Mortensen, and M.R. Ryan. 2010. A new hypothesis for the functional role of diversity in mediating resource pools and weed-crop competition in agroecosystems. Weed Res. 50, 37-48. Doi: 10.1111/j.1365-3180.2009.00745.x

Storkey, J., S. Moss, and J. Cussans. 2010. Using assembly theory to explain changes in a weed flora in response to agricultural intensification. Weed Sci. 58(1), 39-46. Doi: 10.1614/WS-09-096.1

Suding, K.N., S.L. Collins, L. Gough, C. Clark, E.E. Cleland, K.L. Gross, D.G. Milchunas, and S. Pennings. 2005. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl. Acad. Sci. USA 102(12), 4387-4392. Doi: 10.1073/pnas.0408648102

Sweeney, A., K. Renner, C. Laboski, and A. Davis. 2008. Effect of fertilizer nitrogen on weed emergence and growth. Weed Sci. 56(5), 714-721. Doi: 10.1614/WS-07-096.1

Team R. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Thomas, A.G., D.A. Derksen, R.E. Blackshaw, R.C. Van Acker, A. Légère, P.R. Watson, and G.C. Turnbul. 2004. A multistudy approach to understanding weed population shifts in medium- to long-term tillage systems. Weed Sci. 52, 874-880 Doi: 10.1614/WS-04-010R1

Travlos, I.S. 2010. Legumes as cover crops or components of intercropping systems and their effects on weed populations and crop productivity. pp. 151-164. In: Greco, A.J. (ed.). Progress in food science and technology. Nova Science Publishers, Hauppauge, NY.

Travlos, I.S. 2013. Weeds in perennial crops as an unexpected tool of integrated crop management. pp. 97-114. In: Taab, A. (ed.). Weeds and their ecological functions. Nova Science Publishers, Hauppauge, NY.

Travlos, I.S., N. Cheimona, I. Roussis, and D.J. Bilalis. 2018. Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Front. Environ. Sci. 6, 11. Doi: 10.3389/fenvs.2018.00011

Ubom, R.M., F.O. Ogbemudia, and K.O. Benson. 2012. Soil-vegetation relationship in fresh water swamp forest. Sci. J. Biol. Sci. 1(2), 43-51.

Ugen, M., H. Wien, and C. Wortmann. 2002. Dry bean competitiveness with annual weeds as affected by soil nutrient availability. Weed Sci. 50(4), 530-535. Doi: 10.1614/0043-1745(2002)050[0530:DBCWAW]2.0.CO;2

van Elsen, T. 2000. Species diversity as a task for organic agriculture in Europe. Agric. Ecosyst. Environ. 77(1-2), 101-109. Doi: 10.1016/S0167-8809(99)00096-1

Vasquez, E., R. Sheley, and T. Svejcar. 2008. Creating invasion resistant soils via nitrogen management. Invasive Plant Sci. Manage. 1(3), 304-314. Doi: 10.1614/IPSM-07-059.1

Zubizarreta, L. and L. Díaz. 2014. Guía de reconocimiento de malezas. Syngenta, Rosario, Argentina.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a