Skip to main navigation menu Skip to main content Skip to site footer

Physicochemical variability of agricultural soils in the bulb onion (Allium Cepa L.) crop of the irrigation and drainage district Usochicamocha in Boyacá, Colombia

Usochicamocha bulb onion. Photo: F.-E. Forero Ulloa

Abstract

The bulb onion crop, besides being one of the main vegetable crops worldwide for Boyacá, is considered one of the pillars of the regional agricultural economy. Despite being so important from the economic aspect, at the agricultural level this crop has several problems among which stand out the nutritional requirements of the crop and poor practices in terms of soil management and conservation. That is why it is important to understand the physicochemical variability of the soil associated with the crop and how these can be related to intrinsic processes at a local geographic scale. To determine the variability of soil physicochemical conditions in the bulb onion crop, a total of 15 zones of 50m x 50m within the Usochicamocha irrigation district were analyzed. Soil samples were collected and subsequently analyzed in the laboratory. Information was obtained on parameters such as pH, OM%, ED, bulk density, soil texture, Ca, Mg, K, Na and P. The soil data obtained allowed us to observe the grouping patterns of study zones which have no geographical incidence, suggesting that intrinsic characteristics of the crops such as agricultural practices would play a more important role in the physicochemical variability than extrinsic factors such as the ecogeographic range of the zone. Our results support efforts to continue exploring the variability of soil physicochemical conditions within a crop and how these may relate to local soil management and conservation practices after each harvest season.

Keywords

Organic matter, Irrigation water, Variation of physicochemical properties, Attributes and crop quality

PDF

References

  1. Allan, E., P. Manning, F. Alt, J. Binkenstein, S. Blaser, N. Blüthgen, S. Böhm, F. Grassein, N. Hölzel, V.H. Klaus, T. Kleinebecker, E.K. Morris, Y. Oelmann, D. Prati, S.C. Renner, M.C. Rillig, M. Schaefer, M. Schloter, B. Schmitt, I. Schöning, M. Schrumpf, E. Solly, E. Sorkau, J. Steckel, I. Steffen-Dewenter, B. Stempfhuber, M. Tschapka, C.N. Weiner, W.W. Weisser, M. Werner, C. Westphal, W. Wilcke, and M. Fischer. 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18(8), 834-843. Doi: 10.1111/ele.12469
  2. Awal, R., M. Safeeq, F. Abbas, S. Fares, S.K. Deb, A. Ahmad, and A. Fares 2019. Soil physical properties spatial variability under long-term no-tillage corn. Agronomy 9(11), 750. Doi: 10.3390/agronomy9110750
  3. Bengtsson, J., J. Ahnström, and A.-C. Weibull. 2005. The effects of organic agriculture on biodiversity and abundance: a meta‐analysis. J. Appl. Ecol. 42(2), 261-269. Doi: 10.1111/j.1365-2664.2005.01005.x
  4. Berner, A., I. Hildermann, A. Fließbach, L. Pfiffner, U. Niggli, and P. Mäder. 2008. Crop yield and soil fertility response to reduced tillage under organic management. Soil Till. Res. 101(1-2), 89-96. Doi: 10.1016/j.still.2008.07.012
  5. Bilalis, D., A. Karkanis, A. Pantelia, S. Patsiali, A. Konstantas, and A. Efthimiadou. 2012. Weed populations are affected by tillage systems and fertilization practices in organic flax (Linum usitatissimum L.) crop. Aust. J. Crop Sci. 6(1), 157-163.
  6. Bilalis, D., P. Papastylianou, A. Konstantas, S. Patsiali, A. Karkanis, and A. Efthimiadou. 2010. Weed-suppressive effects of maize–legume intercropping in organic farming. Int. J. Pest Manag. 56(2), 173-181. Doi: 10.1080/09670870903304471
  7. Calderón-Medina, C.L., G.P. Bautista-Mantilla, and S. Rojas-González. 2018. Propiedades químicas, físicas y biológicas del suelo, indicadores del estado de diferentes ecosistemas en una terraza alta del departamento del Meta. Orinoquia 22(2), 141-157. Doi: 10.22579/20112629.524
  8. Chaveli, P.C., I. Corrales, R. de Varona, and L. Font. 2019. Fertilización organomineral en el manejo sostenible de tierras cultivadas con maíz (Zea mays L.). Agroecosistemas 7(3), 116-122.
  9. Cheimona, N., C. Angeli, E. Panagiotou, A. Tzanidaki, C. Drontza, I. Travlos, and D. Bilalis. 2016. Effect of different types of fertilization on weed flora in processed tomato crop. Agric. Agric. Sci. Procedia 10, 26-31. Doi: 10.1016/j.aaspro.2016.09.005
  10. Colombia IGAC, Instituto Geográfico Agustín Codazzi. 2006. Métodos analíticos del laboratorio de suelos. 6th ed. Bogota.
  11. Davis, A.S. 2007. Nitrogen fertilizer and crop residue effects on seed mortality and germination of eight annual weed species. Weed Sci. 55(2), 123-128. Doi: 10.1614/WS-06-133.1
  12. Díaz-Zorita, M., M. Barraco, and C. Alvarez. 2004. Efectos de doce años de labranzas en un hapludol del noroeste de Buenos Aires, Argentina. Cienc. Suelo 22(1), 11-18.
  13. Dinler, B.S. and M. Aksoy. 2014. Drought tolerance of knotgrass (Polygonum maritimum L.) leaves under different drought treatments. Pak. J. Bot. 46(2), 417-421.
  14. Ferreras, L.A., S.M.I. Toresani, V.S. Faggioli, and C.M. Galarza. 2015. Sensibilidad de indicadores biológicos edáficos en un Argiudol de la Región Pampeana Argentina. Span. J. Soil Sci. 5(3), 220-235.
  15. Flores-Gallardo, G., E. Sifuentes-Ibarra, H. Flores-Magdaleno, W. Ojeda-Bustamante, and C.R. Ramos-García. 2014. Técnicas de conservación del agua en riego por gravedad a nivel parcelario. Rev. Mex. Cienc. Agríc. 5(2), 241-252. Doi: 10.29312/remexca.v5i2.963
  16. Girón, J.D. 2019. Evaluación documental de los métodos de restauración de suelos salinos, con influencia en el distrito de riego Usochicamocha, departamento de Boyacá. Undergraduate thesis. Facultad de Ingeniería, Universidad de la Salle, Bogota.
  17. GISSAT, Grupo Interinstitucional de Investigación en Suelos Sulfatados Ácidos Tropicales. 2006. Caracterización de la problemática de los suelos sulfatados ácidos improductivos y evaluación del manejo para su habilitación agrícola Distrito de Riego del Alto Chicamocha-Boyacá. Technical Report. UPTC; Colciencias; Usochicamocha, Tunja, Colombia.
  18. GISSAT, Grupo Interinstitucional de Investigación en Suelos Sulfatados Ácidos Tropicales. 2005. Estudio semidetallado de suelos sulfatados ácidos del Distrito de riego del alto Chicamocha. Technical Report. UPTC; Colciencias; Usochicamocha, Tunja, Colombia.
  19. González, H., F.O. Carrete, and F. Meráz. 2007. Cadena agroalimentaria bovinos carne en Durango: diagnóstico y perspectivas de mercado. Publicación Técnica No. 2. INIFAP; CIRNOC, Durango, México.
  20. González, I. and S. Déjean. 2021. CCA: Canonical correlation analysis. R package version 1.2.1. In: https://cran.r-project.org/web/packages/CCA/index.html; consulted: May, 2020.
  21. Gough, L., C.W. Osenberg, K.L. Gross, and S.L. Collins. 2000. Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89(3), 428-439. Doi: 10.1034/j.1600-0706.2000.890302.x
  22. Grey, T.L., T.M. Webster, X. Li, W. Anderson, and G.S. Cutts III. 2015. Evaluation of control of napiergrass (Pennisetum purpureum) with tillage and herbicides. Invasive Plant Sci. Manag. 8(4), 393-400. Doi: 10.1614/IPSM-D-15-00012.1
  23. Harrell, F.E. and C. Dupont. 2018. Hmisc: Harrell miscellaneous. R package version 4.1-1. In: https://cran.r-project.org/web/packages/Hmisc/index.html; consulted: May, 2020.
  24. Hillel, D. 1982. Introduction to soil physics. Academic Press, New York, NY. Doi: 10.1016/B978-0-08-091869-3.50005-6
  25. Husson, F., J. Josse, S. Le, and J. Mazet. 2012. FactoMineR: Multivariate exploratory data analysis and data mining. R package version 1.18. In: http://CRAN.R-project.org/package=FactoMineR; consulted: May, 2020.
  26. Huang, S., X. Pan, Y. Sun, Y. Zhang, X. Hang, X. Yu, and W. Zhang. 2013. Effects of long‐term fertilization on the weed growth and community composition in a double‐rice ecosystem during the fallow period. Weed Biol. Manage. 13(1), 10-18. Doi: 10.1111/wbm.12004
  27. Hyvönen, T., E. Ketoja, J. Salonen, H. Jalli, and J. Tiainen. 2003. Weed species diversity and community composition in organic and conventional cropping of spring cereals. Agric. Ecosyst. Environ. 97(1-3), 131-149. Doi: 10.1016/S0167-8809(03)00117-8
  28. Little, N.G., C.L. Mohler, Q.M. Ketterings, and A. DiTommaso. 2015. Effects of organic nutrient amendments on weed and crop growth. Weed Sci. 63(3), 710-722. Doi: 10.1614/WS-D-14-00151.1
  29. Loera-Alvarado, L.A., M. Torres-Aquino, J.F. Martínez-Montoya, R. Cisneros-Almazán, and J.J. Martínez-Hernández. 2019. Calidad del agua de escorrentía para uso agrícola captada en bordos de almacenamiento. Ecosist. Recur. Agropec. 6(17), 283-295. Doi: 10.19136/era.a6n17.1867
  30. López, H., J.R. Rosales, R. Jiménez, P.A. Domínguez, and H.E. Villaseñor. 2015. Rendimiento y calidad forrajera de variedades de trigo y avena cultivadas durante el invierno en Durango. pp. 63-66. In: VI Congreso Internacional de Manejo de Pastizales. SOMMAP, Durango, México.
  31. Mbong, E.O., S.R. Osu, D.G. Uboh, and I. Ekpo. 2020. Abundance and distribution of species in relation to soil properties in sedge-dominated habitats in Uyo Metropolis, Southern Nigeria. Glob. J. Ecol. 5(1), 24-29. Doi: 10.17352/gje.000015
  32. Monsalve-C., O.I., J.S. Gutiérrez-D., and W.A. Cardona. 2017. Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión. Rev. Colomb. Cienc. Hortic. 11(1), 200-209. Doi: 10.17584/rcch.2017v11i1.5663
  33. Nichols, V., N. Verhulst, R. Cox, and B. Govaerts. 2015. Weed dynamics and conservation agriculture principles: A review. Field Crops Res. 183, 56-68. Doi: 10.1016/j.fcr.2015.07.012
  34. Novillo, I.D., M.D Carrillo, J.E. Cargua, V. Nabel, K.E. Albán, and F.L. Morales. 2018. Propiedades físicas del suelo en diferentes sistemas agrícolas en la provincia de Los Ríos, Ecuador. Temas Agrarios 23(2), 177-187. Doi: 10.21897/rta.v23i2.1301
  35. Oksanen, J., G.L. Simpson, F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O'Hara, P. Solymos, M.HH. Stevens, E. Szoecs, H. Wagner, M. Barbour, M. Bedward, B. Bolker, D. Borcard, G. Carvalho, M. Chirico, M. De Caceres, S. Durand, H.B.A. Evangelista, R. FitzJohn, M. Friendly, B. Furneaux, G. Hannigan, M.O. Hill, L. Lahti, D. McGlinn, M.-H. Ouellette, E.R. Cunha, T. Smith, A. Stier, C.J.F. Ter Braak, and J. Weedon. 2017. Vegan: Community ecology package. R package version 2.4-3. In: https://CRAN.R-project.org/package=vegan; consulted: May, 2020.
  36. Pakeman, R.J., R.W. Brooker, A.J. Karley, A.C. Newton, C. Mitchell, R.L. Hewison, J. Pollenus, D.C. Guy, and C. Schöb. 2020. Increased crop diversity reduces the functional space available for weeds. Weed Res. 60(2), 121-131. Doi: 10.1111/wre.12393
  37. Quinteros-Carabalí, J., J. Gómez-García, M. Solano, G. Llumiquinga, C. Burgos, and D.V. Villacrés. 2019. Evaluación de la calidad de agua para riego y aprovechamiento del recurso hídrico de la quebrada Togllahuayco. Siembra 6(2), 46-57. Doi: 10.29166/siembra.v6i2.1641
  38. Sheley, R., J.J. James, M. Rinella, D. Blumenthal, and J.M. DiTomaso. 2011. Invasive plant management on anticipated conservation benefits: a scientific assessment. 291-336. In: Briske, D.D. (ed.). Conservation benefits of rangeland practices: Assessment, recommendations, and knowledge gaps. NRCS-USDA, Allen Press, Lawrence, KS.
  39. Simpson, G. 2019. Ggvegan; ggplot2-based plots for vegan package. version 0.1.0. In: https://github.com/gavinsimpson/ggvegan; consulted: May, 2020.
  40. Soane, B.D., P.S. Blackwell, J.W. Dickson, and D.J. Painter. 1980. Compaction by agricultural vehicles: A review. I. Soil and wheel characteristics. Soil Till. Res. 1, 207-237. Doi: 10.1016/0167-1987(80)90026-4
  41. Suding, K.N., S.L. Collins, L. Gough, C. Clark, E.E. Cleland, K.L. Gross, D.G. Milchunas, and S. Pennings. 2005. Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl. Acad. Sci. USA 102(12), 4387-4392. Doi: 10.1073/pnas.0408648102
  42. Sweeney, A.E., K.A. Renner, C. Laboski, and A. Davis. 2008. Effect of fertilizer nitrogen on weed emergence and growth. Weed Sci. 56(5), 714-721. Doi: 10.1614/WS-07-096.1
  43. The R Foundation. 2015. R: A language and environment for statistical computing. In: https://www.r-project.org/; consulted: May, 2020.
  44. Thomas, A.G., D.A. Derksen, R.E. Blackshaw, R.C. van Acker, A. Légère, P.R. Watson, and G.C. Turnbull. 2004. A multistudy approach to understanding weed population shifts in medium- to long-term tillage systems. Weed Sci. 52(5), 874-880. Doi: 10.1614/WS-04-010R1
  45. Toledo, M. 2016. Manejo de suelos ácidos de las zonas altas de Honduras: Conceptos y métodos. IICA, Tegucigalpa.
  46. Toledo, D.M., J.A. Galantini, E. Ferreccio, S. Arzuaga, L. Gimenez, and S. Vázquez. 2013. Indicadores e índices de calidad en suelos rojos bajo sistemas naturales y cultivados. Cienc. Suelo 31(2), 201-212.
  47. Travlos, I. 2013. Weeds in perennial crops as an unexpected tool of integrated crop management. 97-113. In: Taab, A. (ed.). Weeds and their ecological functions. Nova, Hauppauge, NY.
  48. Travlos, I.S., N. Cheimona, I. Roussis, and D.J. Bilalis. 2018. Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Front. Environ. Sci. 6, 11. Doi: 10.3389/fenvs.2018.00011
  49. Troeh, F.R. and L.M. Thompson. 2005. Soils and soil fertility. 6th ed. Wiley-Blackwell, New York.
  50. Ugen, M.A., H.C. Wien, and C.S. Wortmann. 2002. Dry bean competitiveness with annual weeds as affected by soil nutrient availability. Weed Sci. 50(4), 530-535. Doi: 10.1614/0043-1745(2002)050[0530:DBCWAW]2.0.CO;2
  51. van Elsen, T. 2000. Species diversity as a task for organic agriculture in Europe. Agric. Ecosyst. Environ. 77(1-2), 101-109. Doi: 10.1016/S0167-8809(99)00096-1
  52. Vankeirsbilck, M.I., M. Barraco, and M. Maekawa. 2016. Materia orgánica y textura en suelos de sistemas lecheros de la cuenca oeste de la provincia de Buenos Aires. pp. 57-59. In: Memoria Técnica 2014-2015. INTA, General Villegas, Argentina.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.