Relación entre caracteres morfoagronómicos en híbridos de tomate
Resumen
El objetivo de este trabajo fue identificar y estimar las relaciones entre variables componentes de producción y rendimiento de frutos en tomate. El experimento se realizó con diseño de bloques al azar con un arreglo factorial 2×3×3, correspondiendo a dos híbridos de tomate, tres dosis de boro y calcio, para un total de 18 tratamientos, cuatro repeticiones y 20 plantas por parcela. Se estimaron los coeficientes de correlación de Pearson entre las variables medidas, posteriormente, se seleccionaron aquellos con mayor significancia para la productividad mediante el método Stepwise y la verificación de la multicolinealidad por el número de condiciones y el factor de inflación de la varianza. Las correlaciones de las variables seleccionadas fueron descompuestas en efectos directos e indirectos sobre la productividad de los frutos mediante el análisis de coeficientes de trayectoria. Se encontró una fuerte correlación entre las variables, excluyendo las variables altura, diámetro y masa promedio de los frutos. Por lo tanto, existen relaciones de causa y efecto entre la variable independiente la masa total de frutos y la variable principal de productividad total de frutos, y las variables diámetro y número total de frutos no contribuyeron a aumentar la productividad de tomate.
Palabras clave
Solanum lycopersicum, Coeficientes de trayectoria, Correlacion de Pearson, Multicolinealidad, Stepwise, Nutrición de plantas
Citas
- Alvares, C.A., J.L. Stape, P.C. Sentelhas, J.L.G Moraes, G. Sparovek. 2013. Koppen’s climate classification map for Brazil. Meteorol. Zeitschrift 22, 711–728. doi:10.1127/0941-2948/2013/0507
- Anuário brasileiro de hortaliças, 2017. Hortaliças, Cleonice de Carvalho Benno Bernardo Kis. Editora Gazeta, Santa Cruz do Sul.
- Bastías, E., C. Alcaraz-López , I. Bonilla, M.C. Martínez-Ballesta , L. Bolaños, M. Carvajal. 2010. Interactions between salinity and boron toxicity in tomato plants involve apoplastic calcium. J. Plant Physiol. 167, 54–60. doi:10.1016/J.JPLPH.2009.07.014
- Cruz, C.D., A.J. Regazzi, P.C.S. Carneiro. 2012. Modelos biométricos aplicados ao melhoramento genético, 4th ed. Editora UFV, Viçosa.
- Donazzolo, J., V.P. Salla, S.A.Z. Sasso , M.A. Danner, I. Citadin, R.O. Nodari. 2017. Path analysis for selection of feijoa with greater pulp weight. Ciência Rural 47. doi:10.1590/0103-8478cr20161062
- Edel, K.H., E. Marchadier, C. Brownlee, J. Kudla, A.M Hetherington. 2017. The Evolution of Calcium-Based Signalling in Plants. Curr. Biol. 27, R667–R679. doi:10.1016/J.CUB.2017.05.020
- Fallahi, H.-R., S.H.R. Ramazani, M. Ghorbany, M. Aghhavani-Shajari. 2017. Path and factor analysis of roselle (Hibiscus sabdariffa L.) performance. J. Appl. Res. Med. Aromat. Plants 6, 119–125. doi:10.1016/J.JARMAP.2017.04.001
- FAO, 2017. FAO: Food and Agriculture Organization of the United Nations Statistics Division. [WWW Document]. URL http://www.fao.org/faostat/en/#data/QC
- González-Fontes, A., M.T. Navarro-Gochicoa, C.J. Ceacero, M.B. Herrera-Rodríguez, J.J. Camacho-Cristóbal, J. Rexach. 2017. Understanding calcium transport and signaling, and its use efficiency in vascular plants, in: Plant Macronutrient Use Efficiency. Elsevier, pp. 165–180. doi:10.1016/B978-0-12-811308-0.00009-0
- Kumar, D., R. Kumar, S. Kumar, M.L. Bhardwaj, M.C.Thakur, R. Kumar, K.S. Thakur, B.S. Dogra, A.Vikram, A. Thakur, P. Kumar. 2013. Genetic Variability, Correlation and Path Coefficient Analysis in Tomato. Int. J. Veg. Sci. 19, 313–323. doi:10.1080/19315260.2012.726701
- Lúcio, A.D., Storck, L., Krause, W., Gonçalves, R.Q., Nied, A.H., 2013. Relações entre os caracteres de maracujazeiro-azedo. Ciência Rural 43, 225–232. doi:10.1590/S0103-84782013000200006
- Moreira, S.O., L.S.A.Gonçalves, R. Rodrigues, C.P. Sudré, A.T. Amaral Júnior, A.M. Medeiros. 2013. Correlações e análise de trilha sob multicolinearidade em linhas recombinadas de pimenta (Capsicum annuum L.). Rev. Bras. Ciencias Agrar. 8, 15–20. doi:10.5039/agraria.v8i1a1726
- Olivoto, T., V.Q. de Souza, M. Nardino, I.R. Carvalho, M. Ferrari, A.J. Pelegrin, V.J. Szareski, D. Schmidt. 2017. Multicollinearity in path analysis: A simple method to reduce its effects. Agron. J. 109, 131–142. doi:10.2134/agronj2016.04.0196
- R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
- Rafiei, F., G.H.A. Saeidi. 2005. GENOTYPIC AND Phenotypic relationships among agronomic traits and yield components in safflower (Carthamus tinctorious l.). Sci. J. Agric. 28, 137–148.
- Rios, S. de A., A. Borém, P.E.O. Guimarães, M.C.D. Paes. 2012. Análise de trilha para carotenoides em milho. Rev. Ceres 59, 368–373. doi:10.1590/S0034-737X2012000300011
- Rodrigues, G.B., B.G. Marim, D.J.H. Silva, A.P. Mattedi, V. S. Almeida. 2010. Análise de trilha de componentes de produção primários e secundários em tomateiro do grupo Salada. Pesqui. Agropecuária Bras. 45, 155–162. doi:10.1590/S0100-204X2010000200006
- Sari, B.G., A.D. Lúcio, C.S. Santana, S.J. Lopes. 2017. Linear relationships between cherry tomato traits. Ciência Rural 47. doi:10.1590/0103-8478cr20160666
- Taiz, L., E. Zeiger, I. Moller, A. Murphy. 2017. Fisiologia e desenvolvimento vegetal, 6th ed. Artmed, Porto Alegre.
- Toebe, M., A.C. Filho. 2013. Multivariate nonnormality and multicollinearity in path analysis in corn. Pesqui. Agropecu. Bras. 48, 466–477. doi:10.1590/S0100-204X2013000500002
- Wright, S., 1923. The theory of path coefficients a reply to nile’s criticism. Genetics 8, 239–255.