Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Síntesis de un pigmento anticorrosivo mediante el tratamiento térmico de los óxidos de hierro procedentes de residuos siderúrgicos

Resumen

Este trabajo reporta la obtención de un pigmento anticorrosivo compuesto principalmente por hematita (ɑ-Fe2O3) a partir de un residuo siderúrgico en polvo proveniente de la cascarilla de óxido superficial de varillas de acero para refuerzo de concreto. Este residuo está compuesto principalmente por Fe2O3 (87.97 %), SiO2 (6.13 %), CaO (1.88 %), Al2O3 (1.30%) y MnO (0.77 %). El óxido de hierro total del residuo está constituido por las siguientes fases cristalinas: magnetita, wustita, lepidocrocita y hematita. La producción de un pigmento con alto contenido de hematita fue posible gracias al alto contenido de óxidos de hierro precursores, los cuales fueron calcinados a diferentes temperaturas (750-850 °C) y tiempos de sostenimiento (0.5-1.50 h). Para caracterizar químicamente el contenido de hierro e identificar sus fases en óxidos de hierro, se utilizaron las técnicas de fluorescencia de rayos X (XRF) y difracción de rayos X (XRD). Los resultados mostraron que el pigmento con mayor cantidad de hematita (ɑ-Fe2O3) se obtuvo a una temperatura de calcinación de 850 °C y un tiempo de sostenimiento de1.00 h.

Palabras clave

difracción de rayos X, hematita, óxidos de hierro, pigmento anticorrosivo, residuo siderúrgico, tratamiento térmico

PDF PDF (English) XML (English)

Referencias

[1] Md. S. Quddus et al., “Synthesis and Characterization of Pigment Grade Red Iron Oxide from Mill Scale,” International Research Journal of Pure and Applied Chemistry, vol. 16 (4), pp. 1-9, Aug. 2018. https://doi.org/10.9734/IRJPAC/2018/42935.

[2] R. M. Cornell, and U. Shewertmann, “Transformations,” in The Iron Oxides, 2nd ed. Weinheim, Germany: Wiley-VCH, Jul. 2003, pp. 365-409. https://doi.org/10.1002/3527602097.ch14.

[3] R. Zboril, M. Mashlan, and D. Petridis, “Iron (III) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications,” Chem. Mater., vol. 14 (3), pp. 969-982, Mar. 2002. https://doi.org/10.1021/cm0111074.

[4] O. R. K. Montedo, F. M. Bertan, R. Piccoli, D. Hotza, and A. P. N. de Oliveira, “Obtenção de Pigmentos de Óxido de Ferro a partir de Resíduos Siderúrgicos,” in Proc. 48th Annu. Meeting. of the Brazilian Ceramic Society, Curitiba, Brazil, 2004. Available at: https://www.ipen.br/biblioteca/cd/cbc/2004/artigos/48cbc-4-23.pdf.

[5] J. Balbuena, L. Sánchez, and M. Yusta-Cruz, “Use of Steel Industry Wastes for the Preparation of Self-Cleaning Mortars,” Materials, vol. 12 (4), pp. 1-13, Feb. 2019. https://doi.org/10.3390/ma12040621.

[6] R. Sugrañez, M. Yusta-Cruz, I. Marmol, J. Morales, and L. Sánchez, “Preparation of Sustainable Photocatalytic Materials through the Valorization of Industrial Wastes,” ChemSusChem, vol. 6 (12), pp. 2340-2347, Dec. 2013. https://doi.org/10.1002/cssc.201300449.

[7] S. Aguaiza, and O. Aldás, “Formación de hematita a partir de desechos sólidos producidos en la extracción de oro, mediante tratamientos térmicos,” Revista EPN, vol. 33 (2), 157-160, 2014.

[8] V. Della, J. A. Junkes, O. R. K. Montedo, A. P. N. Oliviera, C. R. Rambo, and D. Hotza, “Synthesis of Hematite from Steel Scrap to Produce Ceramic Pigments,” Am. Ceram. Soc. Bull., 86(5), 9101-1108, May. 2017.

[9] C. Sikalidis, T. Zorba, K. Chrissafis, and K. M. Paraskevopoulos, “Iron Oxide Pigmenting Powders Produced by Thermal Treatment of Iron Solid Wastes from Steel Mill Pickling Lines,” J. Therm. Anal. Calorim. vol. 86 (2), pp. 411-415, Nov. 2006. https://doi.org/10.1007/s10973-005-7168-8.

[10] H. Ovčačíková, “Possibilities of Recycling of Oiled Scale for Preparation of Pigments,” Acta Metall. Slovaca-Conf., vol. 14, pp. 90-97, Sep. 2014. https://doi.org/10.12776/amsc.v4i0.217.

[11] M. A. Legodi, and D. De Waal, “The Preparation of Magnetite, Goethite, Hematite and Maghemite of Pigment Quality from Mill Scale Iron Waste,” Dyes and Pigments. vol. 74 (1), pp. 161-168, Apr. 2007. https://doi.org/10.1016/j.dyepig.2006.01.038.

[12] E. Zitrou, J. Nikolaou, P. E. Tsakiridis, and G. D. Papadimitriou, “Atmospheric Corrosion of Steel Reinforcing Bars Produced by Various Manufacturing Processes,” Construction and Building Materials, vol. 21 (6), pp. 1161-1169, Jun. 2007. https://doi.org/10.1016/j.conbuildmat.2006.06.004.

[13] L. Cuesta, “Óxidos de hierro en pinturas anticorrosivas,” Inpra Latina, 19(1), pp. 26-30, Feb. 2014.

[14] H. S. A. Emira, N. A. Abdel-Khalek, and F. F. Abdel-Mohsen, “Protective Byproducts. Steelmaking Waste can be Converted to Anticorrosive Pigments,” Europ. Coatings Jnl., no. 10, pp. 40-46, Oct. 2007.

[15] E. Darezereshki, “Nano-Particles by Direct Thermal-Decomposition of Maghemita,” Materials Letters, vol. 65 (4), pp. 642-645, Feb. 2011. https://doi.org/10.1016/j.matlet.2010.11.030.

[16] K. Przepiera, and A. Przepiera, “Kinetics of Thermal Transformations of Precipitated Magnetite and Goethite,” J. Therm. Anal. Calorim., vol. 65 (2), pp. 497-503, Aug. 2001. https://doi.org/10.1023/A:1012441421955.

[17] Y. Cudennec, and A. Lecerf, “Topotactic Transformations of Goethite and Lepidocrocite into Hematite and Maghemita,” Solid State Sciences, vol. 7 (5), pp. 520-529, May. 2005. https://doi.org/10.1016/j.solidstatesciences.2005.02.002.

[18] K. Mori, T. Okada, Y. Takagi, Y. Takada, and T. Mizoguchi, “Oxidation and Disproportionation of Wüstite Studied by Mössbauer Spectroscopy,” Jpn. J. Appl. Phys., vol. 38 (2B), Feb.1999. https://doi.org/10.1143/JJAP.38.L189.

[19] A. M. Olmedo, “Estudio de películas de óxidos de hierro crecidas y depositadas en diversos ambientes,” Ph. D Disertation, Univ. Buenos Aires, Buenos Aires, Argentina, 1990. Available at: http://hdl.handle.net/20.500.12110/tesis_n2320_Olmedo.

[20] Y. M. Mos, A. C. Vermeulen, C. J. N. Buisman, and J. Weijma, “X-Ray Diffraction of Iron Containing Samples: The Importance of a Suitable Configuration,” Geomicrobiology Journal, vol. 35 (6), pp. 511-517, Jul. 2018. https://doi.org/10.1080/01490451.2017.1401183.

[21] P. Whitfield, “Laboratory X-Ray Powder Diffraction,” in U. Kolb, K. Shankland, L. Meshi, A. Avilov y W. David, Eds., Uniting Electron Crystallography and Powder Diffraction, Dordrecht, Países Bajos: Springer, 2012, pp. 53-65.

[22] A. C. Da Silva et al., “Converting Fe-rich Magnetic Wastes into Active Photocatalysts for Environmental Remediation Processes,” Journal of Photochemistry and Photobiology A Chemistry, vol. 335, pp. 259-267, Feb. 2017. https://doi.org/10.1016/j.jphotochem.2016.11.025.g.

[23] D. Jaramillo, “Desarrollo de un protocolo para la aplicación del método de Rietveld y del estándar interno en la caracterización de materiales cerámicos con contenido de amorfos,” Thesis, Univ. EAFIT, Medellín, Colombia, 2015. Available at: http://hdl.handle.net/10784/8531.

[24] M. Morcillo, and B. Chico, Eds. La corrosión atmosférica del acero al carbono en ambientes costeros, España: Editorial CSIC, 2018.

[25] J. Alcántara, D. De La Fuente, B. Chico, J. Simancas, I. Díaz, and M. Morcillo, “Marine Atmospheric Corrosion of Carbon Steel: A Review,” Materials, vol. 10 (4), pp. 1-67, Apr. 2017. https://doi.org/10.3390/ma10040406.

[26] S. Díaz, A. Forero, and O. J. Restrepo, “Hematita especular como pigmento natural en pinturas industriales,” Prospectiva, vol. 8 (1), pp. 71-76, Jun. 2010.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a