Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

<b>Análisis de estabilidad de un sistema de potencia utilizando retroalimentación estática retardada de estados</b>

Resumen

Este artículo presenta el análisis de estabilidad de un sistema de potencia modelado como un generador conectado a un bus infinito con retroalimentación estática retardada de los estados. El sistema de potencia se modela como un sistema algebraico diferencial no lineal. Para el diseño del controlador se linealiza el modelo algebraicodiferencial no lineal entorno a un punto de operación para obtener un modelo algebraico-diferencial lineal. A partir de este modelo se obtiene el modelo de Kronecker- Weierstrass sobre el cual se diseña el controlador. Para la obtención de la ganancia K del controlador se plantean desigualdades matriciales lineales (LMI's). Luego se hace un estudio del retardo máximo que se soporta en la retroalimentación de los estados. Al final del artículo se presentan los resultados y las conclusiones.

Palabras clave

estabilidad de pequeña señal, sistema de potencia, bus infinito, asignación de polos, desigualdades

PDF

Citas

  1. Befekadu, G., (2006): Robust Decentralized Control of Power Systems: A Matrix Inequalities Approach. [Phd Theis]. Germany: University of Duisburg-Essen.
  2. Boukas, E.K., M’Sirdi, N.K.,(2008):Stabilization or linear systems via delayed state feedback controller, ICIC Express Lethers, (1),2, pp.1-6.
  3. Chilali, M., Gahinet P., (1996): H∞ design with pole placement constraint, An LMI approach, IEEE Transaction on Automatic Control (3), 41, pp. 358-367.
  4. Gan, D., Qu, Z., Cai, H., (2000): Multimachine power system excitation control design via theories of feedback linearization control and nonlinear robust control, International journal of Systems Science, (4), 31, pp. 519-527.
  5. Ivanescu, D., Snyder, A. F., Dion, J.,, Dagard, L., Georges, D., Hadjsaid, N., (2002): Control of an interconnected power system: a time delay approach, IMA Journal of Mathematical Control and Information, (1y2), 19, pp. 115-131.
  6. Li, X., (1997): Robust Stabilization and H∞ control of time delay system. [Phd Thesis], Australia: The University of Newcastle: Department Of Electrical and Computer Engineering.
  7. Machowski, J., Bialek, J. W., Bumby, J. R., (2008): Power system Idinamics: Stability and Control, New Delhi, India, Jhon Wiley & Sons Ltd.
  8. Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C., Van Cutsem, T., Kundur, P., Paserba, J., Vittal, V., (2004): Definition and classification of power system stability. IEEE Transaction on Power System, (2), 19, pp. 1387-1401.
  9. Ramos, R., (2002): Procedimiento de projeto de controladores robustos para amortecimiento de osciladores electromecánicas en sistemas de potencia. [Phd thesis]. Brasil: Universidad de Sao Pablo: Scola de Engenharia de Sao Carlos da.
  10. Salamanca, J. M., (2005):Diseño de PSS utilizando desigualdades matriciales lineales . En: III Simposio Internacional sobre Calidad de la Energía Eléctrica SICEL; 2005 Oct. 16-18; Bogotá D.C: SICEL; pp. 621-634.
  11. Salamanca, J. M., Higuera, O. I., Ramírez, J. M., (2008): Control con modos deslizantes con suavización de la señal de control, aplicando a sistemas de potencia modelado como generador conectado a bus infinito. En: Congreso Brasilero de Automática, Septiembre.
  12. Salamanca, J. M., Higuera, O. I., Ramírez, J. M., (2007): Sistemas algebraicos diferenciales análisis y control. En II+D, 1(1), pp. 341-347.
  13. Salamanca, J. M., Rodríguez, O. O., Díaz, H., Ramírez, J. M., (2008): Control robusto H°° basado en desigualdades matriciales lineales aplicado a un sistema de potencia modelado como un sistema algebraico-diferencial de bus infinito. En: XIII Congreso Latinoamericano de Control Automático; 2008 Nov.
  14. Salamanca, J. M., Rodríguez, O. O., Díaz, H., Ramírez, J. M., (2009): Modelamiento de un Sistema de potencia multimáquina interconectado. En: VIII Asociación Colombiana de Automática, Marzo.
  15. Shkrikant, R., Sen, I., (2000): Robust pole placement stabilizer design using linear matrix inequalities. En: IEEE Transactions on Power Systems, 15 (1), pp. 1359-1390.
  16. Snyder, F.K., (1997): Inter-are Oscillation Damping Whit Power System Stabilizer and Synchronized Phasor Measurements. Master’s thesis]. Virginia Polytechnic Institute and State University.
  17. Wang, Y., Xie,L., Middleton, R., (1992): Robust nonlinear controller design for transient stability enhancement of power systems, En Proccedings of the 31 th Conference on Decision and Control, pp. 1117-1122.
  18. Xu S., Lam, J., (2005):Improved delay-dependent stability criteria for time-delay systems. En International Journal Control, Automation, and systems, 50(3), pp. 384-387.
  19. Zhu, X., Lao, T., Lin, C., Guo, L., (2009): Lmi stability criterion with less variables for time-delay systems,En International journal of Control, Automation, and systems. 7 (4), pp. 530-535.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a