Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Algoritmos de aprendizaje de máquina para la predicción de propiedades fisicoquímicas del suelo mediante información espectral: una revisión sistemática

Resumen

En la literatura científica actual se discute ampliamente acerca de la predicción de propiedades edáficas mediante información espectral. El objetivo de esta revisión fue encontrar algoritmos con el mayor potencial predictivo para las propiedades fisicoquímicas del suelo, basados en información espectral capturada con diferentes instrumentos. Se realizó una revisión sistemática en la cual se encontraron 121 artículos de los cuales se eligieron 19, que cumplieran con un coeficiente de determinación mayor a 0,80 o una raíz del error cuadrado medio cercana a 0. Se determinó que el rango espectral más utilizado corresponde al rango desde 350 hasta 2500 nm; los algoritmos mínimos cuadrados parciales, máquina de soporte vectorial y máquina de soporte vectorial ajustado son adecuadas para predecir pH, materia orgánica y carbono orgánico. Además, la regresión lineal solo es efectiva para predecir el carbonato de calcio, materia orgánica, humedad y contenido de agua mediante bandas individuales.

Palabras clave

algoritmos de predicción, aprendizaje de máquina, análisis químico, espectroscopía

PDF XML

Biografía del autor/a

Mateo Vargas-Zapata

Zootecnista

Marisol Medina-Sierra

Ingeniera Agrónoma, Doctora en Ciencias

Luis Fernando Galeano-Vasco

Zootecnista, Doctor en Ciencias

Mario Fernando Cerón-Muñoz

Zootecnista, Doctor en Ciencias


Citas

  1. Ahmadi, A., Emami, M., Daccache, A., & He, L. (2021). Soil properties prediction for precision agriculture using visible and near-infrared spectroscopy: A systematic review and meta-analysis. Agronomy, 11 (433), 1-14. https://doi.org/10.3390/agronomy11030433 DOI: https://doi.org/10.3390/agronomy11030433
  2. Aliyu, M. B. (2017). Efficiency of Boolean search strings for Information retrieval. American Journal of Engineering Research, 6 (11), 216-222.
  3. An, X., Li, M., Zheng, L., & Liu, Y. (2012). Effect of particle size on prediction of soil TN with remote sensing based on NIR spectroscopy. Multispectral, Hyperspectral, and Ultra spectral Remote Sensing Technology, Techniques and Applications IV. International Society for Optics and Photonics, 8527, 852710-1 - 852710-7. https://doi.org/10.1117/12.977349 DOI: https://doi.org/10.1117/12.977349
  4. Angelopoulou, T., Tziolas, N., Balafoutis, A., Zalidis, G., & Bochtis, D. (2019). Remote sensing techniques for soil organic carbon estimation: A review. Remote Sensing, 11 (6), 1-18. https://doi.org/10.3390/rs11060676 DOI: https://doi.org/10.3390/rs11060676
  5. Barra, I., Haefele, S. M., Sakrabani, R., & Kebede, F. (2021). Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances–A review. Trends in Analytical Chemistry, 135, 1-13. https://doi.org/10.1016/j.trac.2020.116166 DOI: https://doi.org/10.1016/j.trac.2020.116166
  6. Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., & Bochtis, D. (2021). Machine learning in agriculture: A comprehensive updated review. Sensors, 21 (11), 1-55. https://doi.org/10.3390/s21113758 DOI: https://doi.org/10.3390/s21113758
  7. Burton, L., Jayachandran, K., & Bhansali, S. (2020). The “Real-Time” revolution for in situ soil nutrient sensing. Journal of The Electrochemical Society, 167 (3), 1-9. https:doi.org/10.1149/1945-7111/ab6f5d DOI: https://doi.org/10.1149/1945-7111/ab6f5d
  8. Crucil, G., Castaldi, F., Aldana, E., van Wesemael, B., Macdonald, A., & Van Oost, K. (2019). Assessing the Performance of UAS-Compatible Multispectral and Hyperspectral Sensors for Soil Organic Carbon Prediction. Sustainability, 11 (7), 1-18. https://doi.org/10.3390/su11071889 DOI: https://doi.org/10.3390/su11071889
  9. Dangal, S. R., Sanderman, J., Wills, S., & Ramirez-Lopez, L. (2019). Accurate and precise prediction of soil properties from a large mid-infrared spectral library. Soil Systems, 3 (1), 11. https://doi.org/10.3390/soilsystems3010011 DOI: https://doi.org/10.3390/soilsystems3010011
  10. Deiss, L., Margenot, A. J., Culman, S. W., & Demyan, M. S. (2020). Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy. Geoderma, 365, 1-12. https://doi.org/10.1016/j.geoderma.2020.114227 DOI: https://doi.org/10.1016/j.geoderma.2020.114227
  11. Demattê, J. A., Alves, M. R., Gallo, B. C., Fongaro, C. T., Romero, D. J., & Sato, M. V. (2015). Hyperspectral remote sensing as an alternative to estimate soil attributes. Revista Ciência Agronômica, 46, 223-232. https://doi.org/10.5935/1806-6690.20150001 DOI: https://doi.org/10.5935/1806-6690.20150001
  12. Demattê, J. A., Dotto, A. C., Paiva, A. F., Sato, M. V., Dalmolin, R. S., Maria do Socorro, B., & do Couto, H. T. Z. (2019). The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges. Geoderma, 354, 1-21. https://doi.org/10.1016/j.geoderma.2019.05.043 DOI: https://doi.org/10.1016/j.geoderma.2019.05.043
  13. Dhawale, N. M., Adamchuk, V. I., Prasher, S. O., & Viscarra Rossel, R. A. (2021). Evaluating the Precision and Accuracy of Proximal Soil vis–NIR Sensors for Estimating Soil Organic Matter and Texture. Soil Systems, 5(3), 1-19. DOI: https://doi.org/10.3390/soilsystems5030048
  14. Diaz-Gonzalez, F. A., Vuelvas, J., Correa, C. A., Vallejo, V. E., & Patino, D. (2022). Machine learning and remote sensing techniques applied to estimate soil indicators–Review. Ecological Indicators, 135, 1-12. https://doi.org/10.1016/j.ecolind.2021.108517 DOI: https://doi.org/10.1016/j.ecolind.2021.108517
  15. Divya, Y., & Gopinathan, P. (2019). Soil water content measurement using hyper-spectral remote sensing techniques - A case study from north-western part of Tamil Nadu, India. Remote Sensing Applications: Society and Environment, 14, 1-7. https://doi.org/10.1016/j.rsase.2019.01.005.45739 DOI: https://doi.org/10.1016/j.rsase.2019.01.005
  16. Fang, Q., Hong, H., Zhao, L., Kukolich, S., Yin, K., & Wang, C. (2018). Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: A review. Journal of Spectroscopy, 2018, 1-14. https://doi.org/10.1155/2018/3168974 DOI: https://doi.org/10.1155/2018/3168974
  17. Gaikwad, C. M., Kakarwal, S. N., Sapkal, S., & Uke, N. (2020). Estimation of Soil Attributes using Spectroscopy. CSI Journal of Computing, 3 (2), 12-15.
  18. Gourlay, S., Aynekulu, E., Carletto, C., & Shepherd, K. (2017). Spectral Soil Analysis & Household Surveys: Guidebook for Integration. https://cgspace.cgiar.org/handle/10568/99331
  19. Guerrero, A., De Neve, S., & Mouazen, A. M. (2021). Current sensor technologies for in situ and on-line measurement of soil nitrogen for variable rate fertilization: A review. Advances in Agronomy, 168, 1-38. https://doi.org/10.1016/bs.agron.2021.02.001 DOI: https://doi.org/10.1016/bs.agron.2021.02.001
  20. Guo, L., Shi, T., Linderman, M., Chen, Y., Zhang, H., & Fu, P. (2019). Exploring the influence of spatial resolution on the digital mapping of soil organic carbon by airborne hyperspectral VNIR imaging. Remote Sensing, 11 (9), 1-16. https://doi.org/10.3390/rs11091032 DOI: https://doi.org/10.3390/rs11091032
  21. He, T., Wang, J., Guo, X., & Chen, Y. (2004). Study on applying hyperspectral remote sensing technology in land quality monitoring. Remote Sensing for Environmental Monitoring, GIS Applications and Geology IV. International Society for Optics and Photonics, 5574, 410-419. https://doi.org/10.1117/12.565987 DOI: https://doi.org/10.1117/12.565987
  22. Hong, Y., Chen, S., Zhang, Y., Chen, Y., Yu, L., Liu, Y., ... & Liu, Y. (2018). Rapid identification of soil organic matter level via visible and near-infrared spectroscopy: Effects of two-dimensional correlation coefficient and extreme learning machine. Science of the Total Environment, 644, 1232-1243. https://doi.org/10.1016/j.scitotenv.2018.06.319 DOI: https://doi.org/10.1016/j.scitotenv.2018.06.319
  23. Hong, Y., Guo, L., Chen, S., Linderman, M., Mouazen, A. M., Yu, L., Chen, Y., Liu, Y., Liu, Y., Cheng, H., & amp; Liu, Y. (2020). Exploring the potential of airborne hyperspectral image for estimating topsoil organic carbon: Effects of fractional-order derivative and optimal band combination algorithm. Geoderma, 365, 1-12. https://doi.org/10.1016/j.geoderma.2020.114228 DOI: https://doi.org/10.1016/j.geoderma.2020.114228
  24. Inoue, Y. (2020). Satellite-and drone-based remote sensing of crops and soils for smart farming–a review. Soil Science and Plant Nutrition, 66 (6), 798-810. https://doi.org/10.1080/00380768.2020.1738899 DOI: https://doi.org/10.1080/00380768.2020.1738899
  25. Jaconi, A., Vos, C., & Don, A. (2019). Near infrared spectroscopy as an easy and precise method to estimate soil texture. Geoderma, 337, 906-913. DOI: https://doi.org/10.1016/j.geoderma.2018.10.038
  26. Justin-George, K., Kumar, S., & Raj, R. A. (2020). Soil organic carbon prediction using visible-near infrared reflectance spectroscopy employing artificial neural network modelling. Current Science, 119 (2), 377-381. DOI: https://doi.org/10.18520/cs/v119/i2/377-381
  27. Kurmai-Takács, Z., & Csorba, Á. (2015). A reflektancia spektroszkópia alkalmazása talajok kémhatásának becslésében. Journal of Central European Green Innovation, 3 (3), 113-132.
  28. Kurz, T. H., & Buckley, S. J. (2016). A review of hyperspectral imaging in close range applications. XXIII ISPRS The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress, XLI-B5, 865-870. DOI: https://doi.org/10.5194/isprsarchives-XLI-B5-865-2016
  29. Lagacherie, P., Baret, F., Feret, J. B., Netto, J. M., & Robbez-Masson, J. M. (2008). Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sensing of Environment, 112 (3), 825-835. https://doi.org/10.1016/j.rse.2007.06.014.44133. DOI: https://doi.org/10.1016/j.rse.2007.06.014
  30. Lei, S., Bao, N., Liu, S., & Liu, X. (2016). Modelling and Predicting of Soil Electrical Conductivity and PH from Semi-arid Grassland Using VIS-NIR Spectroscopy Technology. International Conference on Computer and Computing Technologies in Agriculture, 442-453. DOI: https://doi.org/10.1007/978-3-030-06155-5_45
  31. Li, H., Jia, S., & Le, Z. (2019). Quantitative Analysis of Soil Total Nitrogen Using Hyperspectral Imaging Technology with Extreme Learning Machine. Sensors, 19 (20), 1-13. https://doi:10.3390/s19204355.47245. DOI: https://doi.org/10.3390/s19204355
  32. Liu, H., Zhang, Y., & Zhang, B. (2009). Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China. Environmental monitoring and assessment, 154 (1), 147-154. https://doi:10.1007/s10661-008-0385-4 DOI: https://doi.org/10.1007/s10661-008-0385-4
  33. Liu, S., Shen, H., Chen, S., Zhao, X., Biswas, A., Jia, X., ... & Fang, J. (2019). Estimating forest soil organic carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment. Geoderma, 348, 37-44. DOI: https://doi.org/10.1016/j.geoderma.2019.04.003
  34. Lu, B., Dao, P. D., Liu, J., He, Y., & Shang, J. (2020). Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing, 12 (16), 1-44. https://doi.org/10.3390/rs12162659 DOI: https://doi.org/10.3390/rs12162659
  35. Malmir, M., Tahmasbian, I., Xu, Z., Farrar, M. B., & Bai, S. H. (2019). Prediction of soil macro-and micro-370elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging371 technique. Geoderma, 340, 70-80. https://doi.org/10.1016/j.geoderma.2018.12.049 DOI: https://doi.org/10.1016/j.geoderma.2018.12.049
  36. Mustafa, A. E. R. A., & Moursy, A. R. (2020). Using a multivariate regression model and hyperspectral reflectance data to predict soil parameters of Agra, India. International Journal of Geography, Geology and Environment, 2 (1), 4-9. https://doi.org/10.22271/27067483.2020.v2.i1a.12 DOI: https://doi.org/10.22271/27067483.2020.v2.i1a.12
  37. Nawar, S., & Mouazen, A. M. (2018). Optimal sample selection for measurement of soil organic carbon using on-line vis-NIR spectroscopy. Computers and Electronics in Agriculture, 151, 469-477. DOI: https://doi.org/10.1016/j.compag.2018.06.042
  38. Olatunde, K. A. (2021). Estimation of soil organic carbon using chemometrics: a comparison between mid-infrared and visible near infrared diffuse reflectance spectroscopy. West African Journal of Applied Ecology, 29 (2), 1-11.
  39. Padarian, J., Minasny, B., & McBratney, A. B. (2020). Machine learning and soil sciences: A review aided by machine learning tools. Soil, 6 (1), 35-52. https://doi.org/10.5194/soil-6-35-2020 DOI: https://doi.org/10.5194/soil-6-35-2020
  40. Qi, H., Paz, T., Karnieli, A., Jin, X., & Li, S. (2018). Evaluating calibration methods for predicting soil available nutrients using hyperspectral VNIR data. Soil and Tillage Research, 175, 267-275. https://doi.org/10.1016/j.still.2017.09.006.447 DOI: https://doi.org/10.1016/j.still.2017.09.006
  41. Santra, P., Singh, R., Sarathjith, M., Panwar, N., Varghese, P., & Das, B. (2015). Reflectance spectroscopic approach for estimation of soil properties in hot arid western Rajasthan, India. Environmental Earth Sciences, 74 (5), 4233-4245. https://doi.org/10.1007/s12665-015-4383-x DOI: https://doi.org/10.1007/s12665-015-4383-x
  42. Shi, P., Castaldi, F., van Wesemael, B., & Van Oost, K. (2020). Vis-NIR spectroscopic assessment of soil aggregate stability and aggregate size distribution in the Belgian Loam Belt. Geoderma, 357, 1-9. https://doi.org/10.1016/j.geoderma.2019.113958 DOI: https://doi.org/10.1016/j.geoderma.2019.113958
  43. Song, Y. Q., Zhao, X., Su, H. Y., Li, B., Hu, Y. M., & Cui, X. S. (2018). Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale. Sensors, 18 (9), 1-18. https://doi:42410.3390/s18093086.42526 DOI: https://doi.org/10.3390/s18093086
  44. Sur, K., & Chauhan, P. (2019). Imaging spectroscopic approach for land degradation studies: a case study from the arid land of India. Geomatics, Natural Hazards and Risk, 10 (1), 898-911. https://doi:51710.1080/19475705.2018.1552629.51864 DOI: https://doi.org/10.1080/19475705.2018.1552629
  45. Vašát, R., Kodešová, R., & Borvka, L. (2017). Ensemble predictive model for more accurate soil organic carbon spectroscopic estimation. Computers & Geosciences, 104, 75-83. https://doi.org/10.1016/j.cageo.2017.04.008 DOI: https://doi.org/10.1016/j.cageo.2017.04.008
  46. Vohland, M., Ludwig, M., Sören, T.B., & Ludwig, B. (2017). Quantification of Soil Properties with Hyperspectral Data: Selecting Spectral Variables with Different Methods to Improve Accuracies and Analyze Prediction Mechanisms. Remote Sensing, 9 (11), 1-24. https://doi:10.3390/rs9111103.40719. DOI: https://doi.org/10.3390/rs9111103
  47. Wei, L., Yuan, Z., Wang, Z., Zhao, L., Zhang, Y., Lu, X., & Cao, L. (2020). Hyperspectral inversion of soil organic matter content based on a combined spectral index model. Sensors, 20 (10), 1-17. https://doi.org/10.3390/s20102777 DOI: https://doi.org/10.3390/s20102777
  48. Wu, T., Yu, J., Lu, J., Zou, X., & Zhang, W. (2020). Research on inversion model of cultivated soil moisture content based on hyperspectral imaging analysis. Agriculture, 10 (7), 1-14. https://doi.org/10.3390/agriculture10070292 DOI: https://doi.org/10.3390/agriculture10070292
  49. Yunus, Y., Satriyo, P., & Munawar, A. A. (2019). Rapid Prediction of Soil Quality Indices Using Near Infrared Spectroscopy. IOP Conference Series: Earth and Environmental Science, 365, 1-7. IOP Publishing. https://doi.org/10.1088/1755-1315/365/1/012043 DOI: https://doi.org/10.1088/1755-1315/365/1/012043

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 5 > >> 

También puede {advancedSearchLink} para este artículo.