Skip to main navigation menu Skip to main content Skip to site footer

Quadratic functions for efficient load balancing in the terminals of a substation of a three-phase asymmetric network with power loss reduction capabilities

Abstract

This research addresses the problem of optimal load balancing in terminals of the three-phase substation by proposing three quadratic objective functions. These objective functions are formulated considering active, reactive, and apparent power consumptions aggregated at the terminals of the substation. The proposed formulation belongs to the mixed-integer quadratic models’ family, which can be solved globally with specialized mixed-integer convex tools. To evaluate the effect of load redistribution in the substation terminals, the 15- and 35-bus grids are tested using each of the proposed quadratic functions. In addition, Broyden's unbalanced power flow method is used to determine the extent of power loss reduction and enhancement of voltage profile. Numerical results confirm the effectiveness of the proposed mixed-integer quadratic model in enhancing electrical performance in three-phase asymmetric networks through load balancing at the substation terminals. After solving each quadratic function for the 15-bus grid, power losses were reduced between 12.9624% and 17.2550%, and these reductions were between 5.0771% and 7.7389% in the 35-bus grid.

Keywords

mixed-integer quadratic models, load redistribution, asymmetric three-phase networks, Broyden’s power flow method

PDF

Author Biography

Lina María Riaño-Enciso

Ingeniera Eléctrica, Estudiante de Maestría en Ingeniería

Oscar Danilo Montoya-Giraldo

Ingeniero Electricista, Doctor en Ingeniería.

Walter Julián Gil-González

Ingeniero Electricista, Doctor en Ingeniería.


References

  1. Al-Kharsan, I. H., Marhoon, A. F., & Mahmood, J. R. (2020). The Balancing of Secondary Distribution Feeders by Two Techniques GWO and PSO Applied in Baghdad, Comparative Study. IOP Conference Series: Materials Science and Engineering, 745, 012011. https://doi.org/10.1088/1757-899X/745/1/012011 DOI: https://doi.org/10.1088/1757-899X/745/1/012011
  2. Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A Fresh Approach to Numerical Computing. SIAM Review, 59, 65–98. https://doi.org/10.1137/141000671 DOI: https://doi.org/10.1137/141000671
  3. Bina, M. T., & Kashefi, A. (2011). Three-phase unbalance of distribution systems: Complementary analysis and experimental case study. International Journal of Electrical Power & Energy Systems, 33, 817–826. https://doi.org/10.1016/j.ijepes.2010.12.003 DOI: https://doi.org/10.1016/j.ijepes.2010.12.003
  4. Bohórquez-Álvarez, D. P., Niño-Perdomo, K. D., & Montoya, O. D. (2023). Optimal Load Redistribution in Distribution Systems Using a Mixed-Integer Convex Model Based on Electrical Momentum. Information, 14, 229. https://doi.org/10.3390/info14040229 DOI: https://doi.org/10.3390/info14040229
  5. Claeys, S., Vanin, M., Geth, F., & Deconinck, G. (May de 2021). Applications of optimization models for electricity distribution networks. WIREs Energy and Environment, 10. https://doi.org/10.1002/wene.401 DOI: https://doi.org/10.1002/wene.401
  6. Cortés-Caicedo, B., Avellaneda-Gómez, L. S., Montoya, O. D., Alvarado-Barrios, L., & Chamorro, H. R. (2021). Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies, 14, 1282. https://doi.org/10.3390/en14051282 DOI: https://doi.org/10.3390/en14051282
  7. El Hassan, M., Najjar, M., & Tohme, R. (2022). A Practical Way to Balance Single Phase Loads in a Three Phase System at Distribution and Unit Level. Renewable Energy Power Quality Journal, 20, 173–177. https://doi.org/10.24084/repqj20.255 DOI: https://doi.org/10.24084/repqj20.255
  8. Garcés, A., Castaño, J. C., & Rios, M. A. (2020). Phase Balancing in Power Distribution Grids: A Genetic Algorithm with a Group-Based Codification. Handbook of Optimization in Electric Power Distribution Systems, 325–342. https://doi.org/10.1007/978-3-030-36115-0_11 DOI: https://doi.org/10.1007/978-3-030-36115-0_11
  9. Garcés-Ruiz, A. (2022). Flujo de potencia en redes de distribución eléctrica trifásicas no equilibradas utilizando Matlab: Teoría, análisis y simulación cuasi-dinámica. Ingeniería, 27, e19252. https://doi.org/10.14483/23448393.19252 DOI: https://doi.org/10.14483/23448393.19252
  10. Granada-Echeverri, M., Gallego-Rendón, R. A., & López-Lezama, J. M. (2012). Optimal phase balancing planning for loss reduction in distribution systems using a specialized genetic algorithm. Ingeniería y Ciencia, 8, 121–140. https://doi.org/10.17230/ingciencia.8.15.6 DOI: https://doi.org/10.17230/ingciencia.8.15.6
  11. Grigoraș, G., Neagu, B.-C., Gavrilaș, M., Triștiu, I., & Bulac, C. (2020). Optimal phase load balancing in low voltage distribution networks using a smart meter data-based algorithm. Mathematics, 8, 549. https://doi.org/10.3390/math8040549 DOI: https://doi.org/10.3390/math8040549
  12. Huangfu, C., Wang, E., Yi, T., & Qin, L. (2024). Low-Voltage Distribution Network Loss-Reduction Method Based on Load-Timing Characteristics and Adjustment Capabilities. Energies, 17, 1115. https://doi.org/10.3390/en17051115 DOI: https://doi.org/10.3390/en17051115
  13. Jimenez, V. A., Will, A. L., & Lizondo, D. F. (2022). Phase reassignment for load balance in low-voltage distribution networks. International Journal of Electrical Power & Energy Systems, 137, 107691. https://doi.org/10.1016/j.ijepes.2021.107691 DOI: https://doi.org/10.1016/j.ijepes.2021.107691
  14. Lubin, M., Dowson, O., Garcia, J. D., Huchette, J., Legat, B., & Vielma, J. P. (2022). JuMP 1.0: Recent improvements to a modeling language for mathematical optimization. https://doi.org/10.48550/ARXIV.2206.03866 DOI: https://doi.org/10.1007/s12532-023-00239-3
  15. Marini, A., Mortazavi, S. S., Piegari, L., & Ghazizadeh, M.-S. (2019). An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electric Power Systems Research, 170, 229–243. https://doi.org/10.1016/j.epsr.2018.12.026 DOI: https://doi.org/10.1016/j.epsr.2018.12.026
  16. Montoya, O. D., Giraldo, J. S., Grisales-Noreña, L. F., Chamorro, H. R., & Alvarado-Barrios, L. (2021). Accurate and Efficient Derivative-Free Three-Phase Power Flow Method for Unbalanced Distribution Networks. Computation, 9, 61. https://doi.org/10.3390/computation9060061 DOI: https://doi.org/10.3390/computation9060061
  17. Montoya, O. D., Grisales-Noreña, L. F., & Rivas-Trujillo, E. (2021). Approximated mixed-integer convex model for phase balancing in three-phase electric networks. Computers, 10, 109. https://doi.org/10.3390/computers10090109 DOI: https://doi.org/10.3390/computers10090109
  18. Riaño-Enciso, L. M., Montoya, O. D., & Gil-González, W. (2023). Implementation of Broyden’s Method to Compute the Three-Phase Power Flow in Electrical Distribution Networks with Asymmetric Loading. 2023 IEEE Colombian Caribbean Conference (C3). https://doi.org/10.1109/c358072.2023.10436180 DOI: https://doi.org/10.1109/C358072.2023.10436180
  19. Shen, T., Li, Y., & Xiang, J. (2018). A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies, 11, 511. https://doi.org/10.3390/en11030511 DOI: https://doi.org/10.3390/en11030511
  20. Soltani, S. H., Rashidinejad, M., & Abdollahi, A. (2017). Dynamic phase balancing in the smart distribution networks. International Journal of Electrical Power & Energy Systems, 93, 374–383. https://doi.org/10.1016/j.ijepes.2017.06.016 DOI: https://doi.org/10.1016/j.ijepes.2017.06.016
  21. Tuppadung, Y., & Kurutach, W. (2006). The modified particle swarm optimization for phase balancing. TENCON 2006-2006 IEEE Region 10 Conference, 1–4. https://doi.org/10.1109/TENCON.2006.344014 DOI: https://doi.org/10.1109/TENCON.2006.344014
  22. Wilms, Y., Fedorovich, S., & Kachalov, N. A. (2017). Methods of reducing power losses in distribution systems. In: (A. A. Kozyreva, A. O. Zhdanova, & G. V. Kuznetsov, Edits.) MATEC Web of Conferences, 141, 01050. https://doi.org/10.1051/matecconf/201714101050 DOI: https://doi.org/10.1051/matecconf/201714101050

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.