Implementation of a system of treatment with plasma for gases using a dielectric barrier discharge cell

Authors

  • Eduin Yesid Mora Mendoza Universidad Pedagógica y Tecnológica de Colombia
  • Armando Sarmiento Santos Universidad Pedagógica y Tecnológica de Colombia
  • Francy Mayoli Casallas Caicedo Universidad Pedagógica y Tecnológica de Colombia

DOI:

https://doi.org/10.19053/20278306.3141

Keywords:

dielectric barrier discharge, electrodes, micro-discharges, plasma, cylindrical reactor.

Abstract

The use of the Dielectric Barrier Discharge (DBD) was initiated in Europe for the production of ozone in the treatment of water for human consumption. From then, the number of industrial applications of this kind of discharge has continued increasing. Currently the DBDs are successfully applied to pollution control and polymers surface treatment in order to increase its printability and adhesion. The invention of the glow discharge at atmospheric pressure, which is based on the DBD, also theoretical studies have been conducted to achieve a better understanding of the mechanisms thereof. This paper presents a detailed description of the phenomenon DBD, and describes the development of a system for the study of the treatment with plasma of gaseous media. The functionality of the developed system was verified with air obtaining visible plasma at 12.31 kV and 27.2 kHz. The results obtained in implementation are consistent with those reported in the literature.

Downloads

Download data is not yet available.

Author Biographies

Eduin Yesid Mora Mendoza, Universidad Pedagógica y Tecnológica de Colombia

Ingeniero Electromecánico, Estudiante de Maestría en Metalurgia y Ciencias de los Materiales, Licenciatura en Tecnología, Universidad Pedagógica y Tecnológica de Colombia UPTC, E-mail: eduin.mora@uptc.edu.co

Armando Sarmiento Santos, Universidad Pedagógica y Tecnológica de Colombia

Ph.d. en Ciencias e Ingeniería de los Materiales, Escuela de Física, Universidad Pedagógica y Tecnológica de Colombia UPTC, E-mail: asarmiento.santos@uptc.edu.co

Francy Mayoli Casallas Caicedo, Universidad Pedagógica y Tecnológica de Colombia

Ingeniero Electromecánico, Estudiante de Maestría en Metalurgia y Ciencias de los Materiales, Licenciatura en Tecnología Universidad Pedagógica y Tecnológica de Colombia UPTC,  E-mail: francy.casallas@uptc.edu.co

References

Chong-Lin S., Feng, B., Ze-Min, T., Fang Cheng, L., & Qi-Fei H. (2008). Simultaneous removals of NOx, HC and PM from diesel exhaust emissions by dielectric barrier discharges. State Key Laboratory of Engines, Tianjin University, Tianjin. China.

Christensen, C. P. (1979). Pulsed transverse electrodeless discharge excitation of a CO2 laser. Applied Physics Letters, 34(3), 211-213.

Figueroa, A. (2010). Construcción y caracterización de un reactor de plasma de barrera dieléctrica para la producción de hidrógeno a partir de un gas metano (Tesis de maestría). Instituto Politécnico Nacional, Querétano México.

Fridman, A. (2008). Plasma Chemistry. 1 st ed. Cambridge University.

Givalov, J., & Pietsch, V. G. (1992).Gas discharges and their applications. Great Britain. 552-555.

Hippler, R., Kersten. H., & Scmidt, M. (2008). Low temperature plasmas. Fundamentals, technologies and techniques. 2 ed. Wiley-vch.

Indarto, A. (2008). Hydrogen production from methane in a dielectric barrier discharge using oxide zinc and chromium as catalyst. Journal of the Chinese Institute of Chemical Engineers, 39(1), 23-28.

Ishchenko, V. N., Lisitsyn, V. N., & Sorokin, A. R. (1978). Excitation of high-pressure laser media by a discharge through an insulator. Quantum Electronics, 8(4), 453-457.

Kim, T. K., & Lee, W. G. (2012). Reaction between methane and carbon dioxide to produce syngas in dielectric barrier discharge system. Journal of Industrial and Engineering Chemistry, 18(5), 1710-1714.

Kogelschatz, U., Eliasson, B., & Hirth, M. (1988). Ozone generation from oxygen and air: discharge physics and reaction mechanisms.

Kogelschatz, U. (1988). Process Technologies for water treatment. S Stucki, plenum press. New York. 87-120.

Penetrante, B. M., Bardsley, J. N., & Hsiao, M. C. (1997). Kinetic analysis of non-thermal plasmas used for pollution control. Japanese journal of applied physics, 36(7S), 5007.

Penetrante, B.M. Shultheis, S.E. (1993).Non thermal plasma techniques for pollution control. Series vol G34. Berlin.

Reitz, U., & Fz Julich. (1992). Jul 2613. Concise synthesis of 1-deoxymannojirimycin. Bioorganic & medicinal chemistry letters, 2(11), 1419-1422.

Rosocha, L. A. (1997). Plasma science and the environment. THStix editors. American Institute of of physics. New York. 261-298.

Ruan, R. R., Han, W., Ning, A., Chen, P. L., Goodrich, P. R., & Zhang, R. (1999). Treatment of odorous and hazardous gases using non-thermal plasma. Journal of Advanced Oxidation Technologies, 4(3), 328-332.

Salge, J. (1996). Plasma-assisted deposition at atmospheric pressure. Surface and Coatings Technology, 80(1), 1-7.

Samojlovič, V. G., Gibalov, V. I., & Kozlov, K. V. (1997). Physical Chemistry of the Barrier Discharge. DVS-verlag GMBH. Düsserldorf.

Sarmiento, B., Brey, J. J., Viera, I. G., González-Elipe, A. R., Cotrino, J., & Rico, V. J. (2007). Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge. Journal of Power sources, 169(1), 140-143.

Sakal Kundu, K., Kennedy, E. M., Gaikwad, V. V., Molloy, T. S., & Dlugogorski, B. Z. (2012). Experimental investigation of alumina and quartz as dielectrics for a cylindrical double dielectric barrier discharge reactor in argon diluted methane plasma. Chemical Engineering Journal, 180, 178-189.

Sentek, J., Krawczyk, K., Młotek, M., Kalczewska, M., Kroker, T., Kolb, T., ... & Schmidt-Szałowski, K. (2010). Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Applied Catalysis B: Environmental, 94(1), 19-26.

Sillman, S., Logan, J. A., & Wofsy, S. C. (1990). The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. Journal of Geophysical Research: Atmospheres (1984–2012), 95(D2), 1837-1851.

Song, C. L., Bin, F., Tao, Z. M., Li, F. C., & Huang, Q. F. (2009). Simultaneous removals of NO< sub> x, HC and PM from diesel exhaust emissions by dielectric barrier discharges. Journal of hazardous materials, 166(1), 523-530.

Sosa, R., Arnaud, E., Memin, E., & Artana, G. (2009). Study of the flow induced by a sliding discharge. Dielectrics and Electrical Insulation, IEEE Transactions on, 16(2), 305-311. DOI :10.1109/TDEI.2009.4815157.

Tabata, N., Yagi, S., & Hishii, M. (1996). Present and future of lasers for fine cutting of metal plate. Journal of materials processing technology, 62(4), 309-314.

Tu, X., & Whitehead, J. C. (2012). Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature. Applied Catalysis B: Environmental, 125, 439-448.

Weschler, C. J., Brauer, M., & Koutrakis, P. (1992). Indoor ozone and nitrogen dioxide: A potential pathway to the generation of nitrate radicals, dinitrogen pentoxide, and nitric acid indoors. Environmental science & technology, 26(1), 179-184.

Published

2014-08-15

How to Cite

Mora Mendoza, E. Y., Santos, A. S., & Casallas Caicedo, F. M. (2014). Implementation of a system of treatment with plasma for gases using a dielectric barrier discharge cell. Revista De Investigación, Desarrollo E Innovación, 5(1), 56–65. https://doi.org/10.19053/20278306.3141

Metrics