Skip to main navigation menu Skip to main content Skip to site footer

Critical Raw Materials and Economic Complexity in Latin America

Abstract

There are minerals that boost economic growth and which are essential for the development of sustainable technologies. These critical raw materials (CRMs) were determined by models created for complex economies. This paper aims to examine the mineral policies regarding CRMs of the main Latin-American economies, and the role of their respective National Innovation Systems (NIS) in the pursuit of greater economic complexity. This is achieved through a comparative assessment method applied to the mineral policies of the principal nations of the region —Brazil, Mexico, Argentina, Colombia and Chile. In this way, we found that due to the simplicity
of these economies, as well as mineral policies that disregard their respective NIS, the increase of the economic complexity of the states in question is compromised. This is characterized by the exiguous value added through the interaction of knowledge and capabilities regarding their mineral resources and industry.

Keywords

mineral resources, non-renewable resources, economic development, innovation, sustainable technologies.

PDF (Español) XML (Español)

Author Biography

Juan Sebastián Lara Rodríguez

Administrador de Empresas, Facultad de Ciencias Económicas, Universidad Pedagógica y Tecnológica de Colombia, Candidato a Magister en Política Científica y Tecnológica, Universidade Estadual de Campinas. Becario Consejo Nacional de Desarrollo Científico y Tecnológico

André Tosi Furtado

Economista, Magister y Doctor en Ciencias Económicas, Université Paris I Pantheón Sorbonne, Pos-Doctorado. Centre de Recherche Sur L'environnment et le Développement, Profesor Títular.

Aleix Altimiras-Martin

Ingeniero y Magister en Ingeniería Mecánica, Universitat Politecnica de Catalunya, Barcelona, y École Centrale de Paris, Doctor en Economía Agrícola, University of Cambridge, Profesor.


References

  1. Abramczyk, H. (2005). Introduction to Laser Spectroscopy (First). Amsterdam: Elsevier B.V. http://doi.org/10.1016/B978-044451662-6/50014-9 DOI: https://doi.org/10.1016/B978-044451662-6/50014-9
  2. Altimiras-Martin, A. (2014). Analysing the Structure of the Economy Using Physical Input–Output Tables. Economic Systems Research, 26(4), 463–485. http://doi.org/10.1080/09535314.2014.950637 DOI: https://doi.org/10.1080/09535314.2014.950637
  3. Alves, A. R., & Coutinho, A. dos R. (2015). The Evolution of the Niobium Production in Brazil. Materials Research, 18(1), 106–112. http://doi.org/10.1590/1516-1439.276414 DOI: https://doi.org/10.1590/1516-1439.276414
  4. Auty, R. M. (2003). Natural resources, development models and sustainable development. In International Institute for Environment and Development, Environmental Economics Programe (pp. 0–25). Stevenage, UK: Earthprint Limited. Retrieved from http://eprints.lancs.ac.uk/9356/ DOI: https://doi.org/10.2139/ssrn.424082
  5. Auty, R. M. (2007). The resources curse and sustainable development. In G. Atkinson, S. Dietz, & E. Neumayer (Eds.), Handbook of Sustainable Development (Vol. I, pp. 207–219). Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing.
  6. Babar, I. M., Sabran, M. B. S., Jusoh, Z., Ahmad, H., Harun, S. W., Halder, A., … Bhadra, S. K. (2014). Double-clad thulium/ytterbium co-doped octagonal-shaped fibre for fibre laser applications 1. Ukrainian Journal of Physical Optics, 15(4), 173–184. DOI: https://doi.org/10.3116/16091833/15/4/173/2014
  7. Becker, P. C., Olsson, N. A., & Simpson, J. R. (1999). Introduction. In Erbium-Doped Fiber Amplifiers (First, pp. 1–11). London, GBR: Academic Press. http://doi.org/10.1016/B978-012084590-3/50003-X DOI: https://doi.org/10.1016/B978-012084590-3/50003-X
  8. Bescher, E., Robson, S. R., Mackenzie, J. D., Patt, B., Iwanczyk, J., & Hoffman, E. J. (2000). New lutetium silicate scintillators. Journal of Sol-Gel Science and Technology, 19(3), 325–328. http://doi.org/10.1023/A:1008785616233 DOI: https://doi.org/10.1023/A:1008785616233
  9. British Geological Survey. (2011). Tungsten profile. Nottingham. Retrieved from www.MineralsUK.com
  10. Brown, A. (2013). By the numbers: critical materials--weak spot for the U.S.? Mechanical Engineering [Serial Online], 135(5), 28–29. Retrieved from Business Source Complete, Ipswich, MA. Accessed July 2, 2014.
  11. Brumme, A. (2014). Wind Energy Deployment and the Relevance of Rare Earths - An Economic Analysis. In Wind Energy Deployment and the Relevance of Rare Earths, An Economic Analysis (1st ed.). Berlin: Springer Fachmedien Wiesbaden. http://doi.org/10.1007/978-3-658-04913-3 DOI: https://doi.org/10.1007/978-3-658-04913-3
  12. Busch, J., Steinberger, J. K., Dawson, D. a, Purnell, P., & Roelich, K. (2014). Managing critical materials with a technology-specific stocks and flows model. Environmental Science & Technology, 48(2), 1298–305. http://doi.org/10.1021/es404877u DOI: https://doi.org/10.1021/es404877u
  13. Chakhmouradian, A. R., Smith, M. P., & Kynicky, J. (2015). From “strategic” tungsten to “green” neodymium: A century of critical metals at a glance. Ore Geology Reviews, 64, 455–458. http://doi.org/10.1016/j.oregeorev.2014.06.008 DOI: https://doi.org/10.1016/j.oregeorev.2014.06.008
  14. Comisión Chilena del Cobre. (2014). Identificación de insumos críticos para el desarrollo de la minería en Chile. Santiago de Chile. Retrieved from http://www.cochilco.cl/descargas/estudios/informes/Insumos Críticos/Estudio_de_Insumos_Criticos_en_la_Mineria_Chilena_VF.pdf
  15. Csikósoya, A., Ćulkoya, K., & Antośoya, M. (2013). Magnesite industry in the Slovak Republic. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 29(3). http://doi.org/10.2478/gospo-2013-0028 DOI: https://doi.org/10.2478/gospo-2013-0028
  16. Dosi, G. (1982). Technological paradigsm and tecnological trajectories. Research Policy, 11, 147–162. http://doi.org/https://doi.org/10.1016/0048-7333(82)90016-6 DOI: https://doi.org/10.1016/0048-7333(82)90016-6
  17. Du, X., & Graedel, T. E. (2013). Uncovering the end uses of the rare earth elements. The Science of the Total Environment, 461–462, 781–4. http://doi.org/10.1016/j.scitotenv.2013.02.099 DOI: https://doi.org/10.1016/j.scitotenv.2013.02.099
  18. Engholm, M., & Norin, L. (2008). Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass. Optics Express, 16, 1260–1268. http://doi.org/10.1364/OE.16.001260 DOI: https://doi.org/10.1364/OE.16.001260
  19. Erdmann, L., & Graedel, T. E. (2011). Criticality of non-fuel minerals: A review of major approaches and analyses. Environmental Science and Technology, 45, 7620–7630. http://doi.org/10.1021/es200563g DOI: https://doi.org/10.1021/es200563g
  20. European Commission. (2014). Report on critical raw materials for the EU, Report of the Ad hoc Working Group on defining critical raw materials. Brussels. Retrieved from http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/crm-report-on-critical-raw-materials_en.pdf
  21. Fromer, N. a., & Diallo, M. S. (2013). Nanotechnology and clean energy: sustainable utilization and supply of critical materials. Journal of Nanoparticle Research, 15(11), 1–15. http://doi.org/10.1007/s11051-013-2011-9 DOI: https://doi.org/10.1007/s11051-013-2011-9
  22. Glöser, S., Tercero, L., Gandenberger, C., & Faulstich, M. (2015). Raw material criticality in the context of classical risk assessment. Resources Policy, 44, 35–46. DOI: https://doi.org/10.1016/j.resourpol.2014.12.003
  23. Goe, M., & Gaustad, G. (2014). Identifying critical materials for photovoltaics in the US: A multi-metric approach. Applied Energy, 123, 387–396. http://doi.org/10.1016/j.apenergy.2014.01.025 DOI: https://doi.org/10.1016/j.apenergy.2014.01.025
  24. Goonan, T. (2011). Rare Earth Elements — End Use and Recyclability. Reston, Virginia: U.S. Geological Survey Scientific Investigations Report 2011–5094. Retrieved from http://pubs.usgs.gov/sir/2011/5094/ DOI: https://doi.org/10.3133/sir20115094
  25. Graedel, T. E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., … Zhu, C. (2012). Methodology of metal criticality determination. Environmental Science and Technology, 46(2), 1063–1070. http://doi.org/10.1021/es203534z DOI: https://doi.org/10.1021/es203534z
  26. Granda, M., Blanco, C., Alvarez, P., Patrick, J. W., & Menéndez, R. (2014). Chemicals from coal coking. Chemical Reviews, 114(3), 1608–1636. http://doi.org/10.1021/cr400256y DOI: https://doi.org/10.1021/cr400256y
  27. Gu, Y. F., Harada, H., & Ro, Y. (2004). Chromium and chromium-based alloys: Problems and possibilities for high-temperature service. Jom, 56(9), 28–33. http://doi.org/10.1007/s11837-004-0197-0 DOI: https://doi.org/10.1007/s11837-004-0197-0
  28. Gupta, V. K., Jain, R., Hamdan, a. J., Agarwal, S., & Bharti, A. K. (2010). A novel ion selective sensor for promethium determination. Analytica Chimica Acta, 681(1–2), 27–32. http://doi.org/10.1016/j.aca.2010.09.037 DOI: https://doi.org/10.1016/j.aca.2010.09.037
  29. Halme, K., Piirainen, K., Vekinis, G., Ernst-Udo, S., & Viljamaa, K. (2012). Substitutionability of Critical Raw Materials. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki. Brussels: European Union. http://doi.org/10.2861/53633
  30. Hartwick, J. M. (1977). Intergenerational Equity and the Investing of Rents from Exhaustible Resources. American Economic Association, 67(5), 972–974. Retrieved from http://www.jstor.org/stable/1828079
  31. Hausmann, R., Hidalgo, C. a., Bustos, S., Coscia, M., Chung, S., Jimenez, J., … Yildirim, M. (2014). The Atlas of Economic Complexity: Mapping Paths to Prosperity (2014th ed.). Cambridge, MA, USA: Harvard University and Masachussetts Institute of Technology. Retrieved from http://atlas.cid.harvard.edu/rankings/ DOI: https://doi.org/10.7551/mitpress/9647.001.0001
  32. Hein, J. R., Mizell, K., Koschinsky, A., & Conrad, T. a. (2013). Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51, 1–14. http://doi.org/10.1016/j.oregeorev.2012.12.001 DOI: https://doi.org/10.1016/j.oregeorev.2012.12.001
  33. Hensel, N. D. (2011). Economic Challenges in the Clean Energy Supply Chain: The Market for Rare Earth Minerals and Other Critical Inputs. Business Economics, 46(3), 171–184. http://doi.org/10.1057/be.2011.17 DOI: https://doi.org/10.1057/be.2011.17
  34. Hidalgo, C. a, & Hausmann, R. (2009). The building blocks of economic complexity. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10570–10575. http://doi.org/10.1073/pnas.0900943106 DOI: https://doi.org/10.1073/pnas.0900943106
  35. Hoppstock, K., & Sures, B. (2004). Platinum-Group Metals. In E. Merian, M. Anke, & M. Stoeppler (Eds.), Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance (pp. 1047–1086). Weinheim, Germany: WILEY-VCH Verlag GmbH&Co. KGaA. http://doi.org/10.1002/9783527619634.ch41 DOI: https://doi.org/10.1002/9783527619634.ch41
  36. Hort, N., Mathaudhu, S., Ncclameggham, N., & Alderman, M. (2013). Magnesium Technology 2013. (M. & M. S. (TMS) Magnesium Committee of the Light Metals Division of The Minerals, Ed.). San Antonio: Wiley. DOI: https://doi.org/10.1002/9781118663004
  37. Karl, T. L. (1997). Review The Paradox of Plenty: Oil Booms and Petro-States. Berkeley: University of California Press. DOI: https://doi.org/10.1525/9780520918696
  38. Köhler, A. R., Bakker, C., & Peck, D. (2013). Critical materials: a reason for sustainable education of industrial designers and engineers. European Journal of Engineering Education, 38(4), 441–451. http://doi.org/10.1080/03043797.2013.796341 DOI: https://doi.org/10.1080/03043797.2013.796341
  39. La teo. (n.d.). Madrid: Alianza Editorial.
  40. Lara-Rodríguez, J. S., & Bermúdez, J. I. (2011). Perspectiva de la política de innovación y su monitoreo en la Unión Europea , 2010-2020. Finanzas Y Política Económica, 3(2), 105–126. Retrieved from http://ideas.repec.org/a/col/000443/009853.html
  41. Lara-Rodríguez, J. S., Rojas, C. A., & Martínez, J. A. (2015). Evolución organizacional : inducción socio-biológica para el entendimiento de la metáfora. AD-Minister, 26(enero-junio), 101–122. http://doi.org/10.17230/ad-minister.26.5 DOI: https://doi.org/10.17230/ad-minister.26.5
  42. Lundvall, B. Å., Vang, J., Chaminade, J., & Chaminade, C. (2009). Innovation system research and developing countries. In B. Å. Lundvall, K. J. Joseph, C. Chaminade, & J. Vang (Eds.), Handbook of Innovation Systems and Developing Countries, Building Domestic Capabilities in a Global Setting (pp. 1–30). Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing. DOI: https://doi.org/10.4337/9781849803427
  43. Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36–43. http://doi.org/10.1016/j.resourpol.2012.07.001 DOI: https://doi.org/10.1016/j.resourpol.2012.07.001
  44. McNeil, D. (2004). Beryllium. London, GBR. Retrieved from http://beryllium.eu/resources/Critical Material and Market Forces Literature/Beryllium Production and Outlook Roskill Mineral Sevices.pdf
  45. Melcher, F., & Buchholz, P. (2014). Germanium. In G. Gunn (Ed.), Critical Metals Handbook (First, pp. 177–203). Nottingham. UK: John Wiley & Sons. http://doi.org/10.1002/9781118755341.ch8 DOI: https://doi.org/10.1002/9781118755341.ch8
  46. Miller, M. (2010). Fluorspar. Mining Engineering, 62(6), 48–49. Retrieved from http://search.proquest.com/docview/578164423?accountid=8113
  47. Ministério de Minas e Energia. (2011). Plano Nacional de Mineração 2030. Geologia, Mineração e Transformação Mineral. Brasilia. Retrieved from http://www.mme.gov.br/documents/1138775/1732821/Book_PNM_2030_2.pdf/f7cc76c1-2d3b-4490-9d45-d725801c3522
  48. Ministerio de Minas y Energía. (2012). Resolución número 18 0102 de 30 enero de 2012 “Por la cual se determinan unos minerales de interés estratégico para el país.” Bogotá D.C.: República de Colombia. Retrieved from http://www.minminas.gov.co/documents/10180//23517//20337-10498.pdf
  49. Ministerio de Minería. (2015). Ministerio de Minería - Cuenta Pública. Santiago de Chile. Retrieved from http://www.gob.cl/cuenta-publica/2015/sectorial/2015_sectorial_ministerio-mineria.pdf
  50. Mishra, B., & Termsuksawad, P. (1999). Niobium. Review of Extraction, Processing, Propierties and Aplications of Reactive Metals, 83–134. http://doi.org/DOI: 10.1002/9781118788417.ch3 DOI: https://doi.org/10.1002/9781118788417.ch3
  51. National Research Council of the National Academies. (2008). Minerals, critical minerals, and the U. S. economy. Washington, D.C.: National Academies Press : Washington, DC, United States. Retrieved from www.nap.edu
  52. Nelson, R. R., & Winter, S. G. (1982). An evolutionary Theory of Economic Change. Cambridge, MA, USA: Harvard University Press.
  53. Platias, S., Vatalis, K. I., & Charalabidis, G. (2013). Innovative Processing Techniques for the Production of a Critical Raw Material the High Purity Quartz. Procedia Economics and Finance, 5(13), 597–604. http://doi.org/10.1016/S2212-5671(13)00070-1 DOI: https://doi.org/10.1016/S2212-5671(13)00070-1
  54. Ploeg, F. Van Der. (2011). Natural Resources: Curse or Blessing? Journal of Economic Literature, 49(2), 366–420. http://doi.org/10.1257/jel.49.2.366 DOI: https://doi.org/10.1257/jel.49.2.366
  55. Programa Nacional de Minería Alta Ley. (2016). Desde el cobre a la innovación. Roadmap Tecnológico 2015-2035. (Fundación Chile, Ed.). Santiago de Chile: A IMPRESORES.
  56. República Argentina. (1887). Ley N° 1919 Código de Minería. Buenos Aires: Senado y Camara de Diputados. Retrieved from http://wp.cedha.net/wp-content/uploads/2011/10/ley-minera-argentina.pdf
  57. Schwarz-Schampera, U. (2014). Indium. In G. Gunn (Ed.), Critical Metals handbook (First, Vol. 11, pp. 204–229). Nottingham. UK: John Wiley & Sons. http://doi.org/10.1002/9781118755341.ch9 DOI: https://doi.org/10.1002/9781118755341.ch9
  58. Secretaría de Economía. (2014). Programa de Desarrollo Minero 2013-2018. Ciudad de México. Retrieved from http://www.dof.gob.mx/nota_detalle.php?codigo=5344070&fecha=09/0
  59. Secretaría de Política Económica y Planificación del Desarrollo. (2016). Informes de cadenas de valor: Minería Metalífera y Rocas de Aplicación. Buenos Aires. Retrieved from http://www.economia.gob.ar/peconomica/docs/ficha_litio_dic_2011.pdf
  60. Senate Committee on Interior and Insular Affairs. (1954). Accessibility of strategic and critical materials to U.S. in time of war and for expanding economy. Accessibility of Strategic and Critical Materials to the United States in Time of War and for Our Expanding Economy. Report of the Committee on Interior and Insular Affairs Made by Its Minerals, Materials, and Fuels Economic Subcommittee pursuant to S. Re. Retrieved from http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edslns&AN=LNSD80B819B-90F7F8E3&lang=es&site=eds-live
  61. Sievers, H., Buijs, B., & Tercero Espinoza, L. a. (2012). Limits to the critical raw materials approach. Proceedings of the ICE - Waste and Resource Management, 165(4), 201–208. http://doi.org/10.1680/warm.12.00010 DOI: https://doi.org/10.1680/warm.12.00010
  62. Slowinski, G., Latimer, D., & Mehlman, S. (2013). Research-on-Research: Dealing with Shortages of Critical Materials. Research-Technology Management, 56(5), 18–24. http://doi.org/10.5437/08956308X5605139 DOI: https://doi.org/10.5437/08956308X5605139
  63. The World Bank. (2013). World Development Indicators: Science and technology. Washington, DC, USA: World Bank Group. Retrieved from http://wdi.worldbank.org/table/5.13
  64. The World Bank. (2014). World Bank GDP Deflator. Retrieved May 28, 2016, from http://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG)
  65. U.S. Geological Survey. (2015). Mineral Commodity Summaries 2015. Reston, Virginia. Retrieved from http://minerals.usgs.gov/minerals/pubs/mcs/2015/mcs2015.pdf DOI: https://doi.org/10.3133/70140094
  66. Unidad de Planeación Minero Energética. (2013). Plan Nacional De Desarrollo Minero 2010 - 2014. Bogotá D.C. Retrieved from http://www.upme.gov.co/Docs/pndm/2013/PNDM2014.pdf
  67. Van Gosen, B., Verplanck, P., Long, K., Gambogi, J., Joseph, & Seal. (2014). The Rare-Earth Elements — Vital to Modern Technologies and Lifestyles. U.S. Geological Survey Fact Sheet 2014–3078. Reston, Virginia: U.S. Geological Survey Fact Sheet 2014–3078. http://doi.org/http://dx.doi.org/10.3133/fs20143078 DOI: https://doi.org/10.3133/fs20143078
  68. World Commission on Environment and Development. (1987). Report of the World Commission on Environment and Development: Our Common Future (The Brundtland Report). Medicine, Conflict and Survival. http://doi.org/10.1080/07488008808408783 DOI: https://doi.org/10.1080/07488008808408783
  69. Wübbeke, J. (2013). Rare earth elements in China: Policies and narratives of reinventing an industry. Resources Policy, 38(3), 1–11. http://doi.org/10.1016/j.resourpol.2013.05.005 DOI: https://doi.org/10.1016/j.resourpol.2013.05.005
  70. Ziemann, S., Grunwald, A., Schebek, L., Müller, D. b., & Weil, M. (2013). The future of mobility and its critical raw materials. Revue de Métallurgie, 110(1), 47–54. http://doi.org/10.1051/metal/2013052 DOI: https://doi.org/10.1051/metal/2013052
  71. Zimmermann, T., & Gößling-Reisemann, S. (2013). Critical materials and dissipative losses: a screening study. The Science of the Total Environment, 461–462, 774–80. http://doi.org/10.1016/j.scitotenv.2013.05.040 DOI: https://doi.org/10.1016/j.scitotenv.2013.05.040

Downloads

Download data is not yet available.

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.