Efecto letal y repelente del monoterpeno geraniol sobre ninfas de Triatoma infestans susceptibles y resistentes a deltametrina
Resumen
Triatoma infestans es el principal vector del parásito Trypanosoma cruzi, agente etiológico de la enfermedad de Chagas. La herramienta más eficaz para el control de T. infestans es el uso de insecticidas del tipo piretroide. Sin embargo, la presencia de ejemplares de T. infestans resistentes a los piretroides conlleva la necesidad de buscar nuevas alternativas para su control. Los bioinsecticidas se posicionan en la actualidad como una alternativa novedosa, menos agresiva para el ambiente y de menor costo con respecto al uso de los insecticidas sintéticos tradicionales. El geraniol es un monoterpeno que ha demostrado tener actividad insecticida y repelente en insectos. Los objetivos del presente trabajo fueron determinar y comparar la actividad letal y repelente del geraniol solo y en combinación con el insecticida piretroide deltametrina y el repelente de insectos N,N-Dietil-meta-toluamida (DEET). Se demostró que el geraniol tiene una actividad letal similar en ninfas susceptibles y resistentes a piretroides (grado de resistencia de 0,8). Cuando se combinaron los dos insecticidas, el geraniol mostró un efecto sinérgico sobre la letalidad de la deltametrina. En cuanto a la actividad repelente, en bajas concentraciones, el geraniol fue menos potente que el DEET; sin embargo, cuando se combinaron ambas moléculas, la presencia de este monoterpeno aumentó la capacidad de repelencia del DEET al 100 %. Se concluye que el geraniol tiene actividad letal sobre ninfas de T. infestans susceptibles y resistentes a los piretroides, y tiene un efecto sinérgico sobre la letalidad de la deltametrina. Asimismo, el geraniol aumentó la capacidad de repelencia del DEET sobre T. infestans.
Palabras clave
Enfermedad de Chagas, Resistencia a los insecticidas, Piretroide, Bioinsecticidas, Potenciación
Citas
- Barnard, D. R., & Xue, R.-D. (2004). Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochierotatus triseriatus (Diptera: Culicidae). Journal of Medical Entomology, 41(4), 726–730. https://doi.org/10.1603/0022-2585-41.4.726 DOI: https://doi.org/10.1603/0022-2585-41.4.726
- Busvine, J. R. (1957). A critical review of the techniques for testing insecticides. Commonwealth Institute of Entomology.
- Chapman, R. F. (2013). The insects: Structure and function (5th ed). Cambridge University Press,
- Chen, W., & Viljoen, A. M. (2010). — A review of a commercially important fragrance material. South African Journal of Botany, 76(4), 643–651. https://doi.org/10.1016/j.sajb.2010.05.008 DOI: https://doi.org/10.1016/j.sajb.2010.05.008
- Choochote, W., Chaithong, U., Kamsuk, K., Jitpakdi, A., Tippawangkosol, P., Tuetun, B., Champakaew, D., & Pitasawat, B. (2007). Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia, 78(5), 359–364. https://doi.org/10.1016/j.fitote.2007.02.006 DOI: https://doi.org/10.1016/j.fitote.2007.02.006
- Chou, T.-C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58(3), 621–681. https://doi.org/10.1124/pr.58.3.10 DOI: https://doi.org/10.1124/pr.58.3.10
- Dadé, M., Zeinsteger, P., Bozzolo, F., & Mestorino, N. (2018). Repellent and lethal activities of extracts from fruits of chinaberry (Melia azedarach L., Meliaceae) against Triatoma infestans. Frontiers in Veterinary Science, 5, 158. https://doi.org/10.3389/fvets.2018.00158 DOI: https://doi.org/10.3389/fvets.2018.00158
- Dadé, M. M., Daniele, M. R., Machicote, M., Errecalde, J. O., & Rodriguez-Vivas, R. I. (2020). First report of the lethal activity and synergism between deltamethrin, amitraz and piperonyl butoxide against susceptible and pyrethroid-resistant nymphs of Triatoma infestans. Experimental Parasitology, 218, 107986. https://doi.org/10.1016/j.exppara.2020.107986 DOI: https://doi.org/10.1016/j.exppara.2020.107986
- De la Vega, G. J. (2016). Bases fisiológicas de la distribución de triatominos vectores de la enfermedad de Chagas [tesis de doctorado]. Universidad de Buenos Aires. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5973_DelaVega.pdf
- Deletre, E., Martin, T., Duménil, C., & Chandre, F. (2019). Insecticide resistance modifies mosquito response to DEET and natural repellents. Parasites & Vectors, 12(1), 89. https://doi.org/10.1186/s13071-019-3343-9 DOI: https://doi.org/10.1186/s13071-019-3343-9
- Gaire, S., Lewis, C. D., Booth, W., Scharf, M. E., Zheng, W., Ginzel, M. D., & Gondhalekar, A. D. (2020). Bed bugs, Cimex lectularius L., exhibiting metabolic and target site deltamethrin resistance are susceptible to plant essential oils. Pesticide Biochemistry and Physiology, 169, 104667. https://doi.org/10.1016/j.pestbp.2020.104667 DOI: https://doi.org/10.1016/j.pestbp.2020.104667
- Gaire, S., Zheng, W., Scharf, M. E., & Gondhalekar, A. D. (2021). Plant essential oil constituents enhance deltamethrin toxicity in a resistant population of bed bugs (Cimex lectularius L.) by inhibiting cytochrome P450 enzymes. Pesticide Biochemistry and Physiology, 175, 104829. https://doi.org/10.1016/j.pestbp.2021.104829 DOI: https://doi.org/10.1016/j.pestbp.2021.104829
- Germano, M. D., & Picollo, M. I. (2018). Stage-dependent expression of deltamethrin toxicity and resistance in Triatoma infestans (Hemiptera: Reduviidae) from Argentina. Journal of Medical Entomology, 55(4), 964–968. https://doi.org/10.1093/jme/tjy017 DOI: https://doi.org/10.1093/jme/tjy017
- Giatropoulos, A., Papachristos, D. P., Kimbaris, A., Koliopoulos, G., Polissiou, M. G., Emmanouel, N., & Michaelakis, A. (2012). Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitology Research, 111(6), 2253–2263. https://doi.org/10.1007/s00436-012-3074-8 DOI: https://doi.org/10.1007/s00436-012-3074-8
- Govindarajan, M., Rajeswary, M., Hoti, S. L., Bhattacharyya, A., & Benelli, G. (2016). Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitology Research, 115(2), 807–815. https://doi.org/10.1007/s00436-015-4809-0 DOI: https://doi.org/10.1007/s00436-015-4809-0
- Liu, Z., Li, Q. X., & Song, B. (2022). Pesticidal activity and mode of action of monoterpenes. Journal of Agricultural and Food Chemistry, 70(15), 4556– 4571. https://doi.org/10.1021/acs.jafc.2c00635 DOI: https://doi.org/10.1021/acs.jafc.2c00635
- Moretti, A. N., Zerba, E. N., & Alzogaray, R. A. (2013). Behavioral and toxicological responses of Rhodnius prolixus and Triatoma infestans (Hemiptera: Reduviidae) to 10 monoterpene alcohols. Journal of Medical Entomology, 50(5), 1046–1054. https://doi.org/10.1603/ME12248 DOI: https://doi.org/10.1603/ME12248
- Mougabure-Cueto G., & Picollo, M. I. (2021). Insecticide resistance in triatomines. In: A. Guarneri, & M. Lorenzo (Ed.), Triatominae — The biology of Chagas disease vectors (pp. 537–555). Entomology in Focus. Springer International Publishing. https://doi.org/10.1007/978-3-030-64548-9_19 DOI: https://doi.org/10.1007/978-3-030-64548-9_19
- OMS (Organización Mundial de la Salud). (1994). Protocolo de evaluación de efecto insecticida sobre triatominos. Acta Toxicológica Argentina, 2, 29–32.
- OPS/OMS (Organización Panamericana de la Salud). (s. f.) Enfermedad de chagas. https://www.paho.org/es/temas/enfermedad-chagas.
- Pavela, R. (2016). History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects: a review. Plant Protection. Science, 52, 229–241. https://doi.org/10.17221/31/2016-PPS DOI: https://doi.org/10.17221/31/2016-PPS
- Picollo, M. I., Vassena, C., Santo, P., Barrios, S., Zaidemberg, M., & Zerba, E. (2005) High resistance to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemiptera: Reduviidae) from Northern Argentina. Journal of Medical Entomology, 42(4), 637–642. https://doi.org/10.1093/jmedent/42.4.637 DOI: https://doi.org/10.1093/jmedent/42.4.637
- Remón, C., Lobbia, P., Zerba, E., Mougabure-Cueto, G. A. (2017). Methodology based on insecticide impregnated filter paper for monitoring resistance to deltamethrin in Triatoma infestans field populations. Medical and Veterinary Entomology, 31(4), 414–426. https://doi.org/10.1111/mve.12252 DOI: https://doi.org/10.1111/mve.12252
- Reynoso, M. N. N., Lucia, A., Zerba, E. N., & Alzogaray, R. A. (2020). The octopamine receptor is a possible target for eugenol-induced hyperactivity in the blood-sucking bug Triatoma infestans (Hemiptera: Reduviidae). Journal of Medical Entomology, 57(2), 627–630. https://doi.org/10.1093/jme/tjz183 DOI: https://doi.org/10.1093/jme/tjz183
- Robertson, J. L., Russell, R. M., Preisler, H. K., & Savin, N. E. (2007). Bioassays with arthropods (2nd ed.). CRC Press. https://doi.org/10.1201/9781420004045 DOI: https://doi.org/10.1201/9781420004045
- Sfara, V., Zerba, E. M., & Alzogaray, R. A. (2006) Toxicity of pyrethroids and repellency of diethyltoluamide in two deltamethrin-resitant colonies of Triatoma infestans Klug, 1834 (Hemiptera: Reduviidae). Memórias do Instituto Oswaldo Cruz, 101(1), 89-94. https://doi.org/10.1590/S0074-02762006000100017 DOI: https://doi.org/10.1590/S0074-02762006000100017
- Sfara, V., Zerba, E. N., & Alzogaray, R. A. (2009). Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of Rhodnius prolixus. Journal of Medical Entomology, 46(3), 511–515. https://doi.org/10.1603/033.046.0315 DOI: https://doi.org/10.1603/033.046.0315
- Tapondjou, A. L., Adler, C., Fontem, D. A., Bouda, H., & Reichmut, C. (2005) Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucaliptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. Journal of Stored Products Research, 41(1), 91–102. https://doi.org/10.1016/j.jspr.2004.01.004 DOI: https://doi.org/10.1016/j.jspr.2004.01.004