Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Mini-Revisión: Aplicación de líquidos iónicos en hidrólisis ácida de material lignocelulósico para la obtención de azúcares

Resumen

En las últimas décadas, la aplicación de líquidos iónicos (LI) como pretratamiento de la biomasa (BM) residual previo a la reacción de hidrólisis, ha demostrado ser un sistema eficiente para mejorar los rendimientos hacia la obtención de monosacáridos. Una mayor recuperación de monosacáridos, se traduce en un mayor rendimiento en la producción de biocombustibles pudiendo volver a esta industria rentable. En este contexto, la presente revisión bibliográfica analiza las características fisicoquímicas, métodos de síntesis, condiciones de disolución con aplicación de variables tales como: relación LI: BM, temperatura y tiempo. Además, se realiza un análisis comparativo de los resultados de procesos de hidrólisis ácida tradicional con respecto a los obtenidos con la aplicación de líquidos iónicos, aumentado en la mayoría de los casos sus rendimientos de reacción.  Finalmente, se mencionan algunas técnicas de recuperación y reciclaje, que permitan reducir los costos del proceso, de manera que este sea económicamente rentable.

Palabras clave

biomasa, hidrólisis ácida, líquidos iónicos, material lignocelulósico

PDF

Referencias

[1] J. van Spronsen, M. A. T. Cardoso, G.-J. Witkamp, W. de Jong, y M. C. Kroon, “Separation and recovery of the constituents from lignocellulosic biomass by using ionic liquids and acetic acid as co-solvents for mild hydrolysis”, Chem. Eng. Process. Process Intensif., vol. 50, n.o 2, p. 196-199, feb. 2011, doi: 10.1016/j.cep.2010.12.010.

[2] X. Yu et al., “Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose”, Ultrason. Sonochem., vol. 41, p. 410-418, mar. 2018, doi: 10.1016/j.ultsonch.2017.09.003.

[3] A.-L. Li, X.-D. Hou, K.-P. Lin, X. Zhang, y M.-H. Fu, “Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse”, J. Biosci. Bioeng., vol. 126, n.o 3, p. 346-354, sep. 2018, doi: 10.1016/j.jbiosc.2018.03.011.

[4] Y. Zhang, G. Wei, G. Yu, y N. Qiao, “Hydrolysis of Straw in Ionic Liquids with Acid as Catalyst under Microwave Irradiation”, J. Nanomater., vol. 2015, p. e709247, 2015, doi: https://doi.org/10.1155/2015/709247.

[5] T. Vancov, A.-S. Alston, T. Brown, y S. McIntosh, “Use of ionic liquids in converting lignocellulosic material to biofuels”, Renew. Energy, vol. 45, p. 1-6, sep. 2012, doi: 10.1016/j.renene.2012.02.033.

[6] P. Reddy, “A critical review of ionic liquids for the pretreatment of lignocellulosic biomass”, South Afr. J. Sci. Pretoria, vol. 111, n.o 11/12, p. 1-9, 2015.

[7] S. K. Singh y A. W. Savoy, “Ionic liquids synthesis and applications: An overview”, J. Mol. Liq., vol. 297, p. 112038, ene. 2020, doi: 10.1016/j.molliq.2019.112038.

[8] P. Bajpai, “Structure of Lignocellulosic Biomass”, en Pretreatment of Lignocellulosic Biomass for Biofuel Production, P. Bajpai, Ed. Singapore: Springer, 2016, p. 7-12.

[9] V. Pasangulapati, K. D. Ramachandriya, A. Kumar, M. R. Wilkins, C. L. Jones, y R. L. Huhnke, “Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass”, Bioresour. Technol., vol. 114, p. 663-669, jun. 2012, doi: 10.1016/j.biortech.2012.03.036.

[10] Y. Liao et al., “The role of pretreatment in the catalytic valorization of cellulose”, Mol. Catal., vol. 487, p. 110883, may 2020, doi: 10.1016/j.mcat.2020.110883.

[11] C. Sievers, M. B. Valenzuela-Olarte, T. Marzialetti, I. Musin, P. K. Agrawal, y C. W. Jones, “Ionic-Liquid-Phase Hydrolysis of Pine Wood”, Ind. Eng. Chem. Res., vol. 48, n.o 3, p. 1277-1286, feb. 2009, doi: 10.1021/ie801174x.

[12] H. Tadesse y R. Luque, “Advances on biomass pretreatment using ionic liquids: An overview”, Energy Environ. Sci., vol. 4, n.o 10, p. 3913-3929, sep. 2011, doi: 10.1039/C0EE00667J.

[13] Li, Q. Wang, y Z. K. Zhao, “Acid in ionic liquid: An efficient system for hydrolysis of lignocellulose”, Green Chem, vol. 10, n.o 2, p. 177-182, 2008, doi: 10.1039/B711512A.

[14] S. Morales de la Rosa, “Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos”, 2015.

[15] Y.-L. Loow, T. Y. Wu, J. Md. Jahim, A. W. Mohammad, y W. H. Teoh, “Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment”, Cellulose, vol. 23, n.o 3, p. 1491-1520, jun. 2016, doi: 10.1007/s10570-016-0936-8.

[16] Li, L. Sun, B. A. Simmons, y S. Singh, “Comparing the Recalcitrance of Eucalyptus, Pine, and Switchgrass Using Ionic Liquid and Dilute Acid Pretreatments”, BioEnergy Res., vol. 6, n.o 1, p. 14-23, mar. 2013, doi: 10.1007/s12155-012-9220-4.

[17] S. Sun, S. Sun, X. Cao, y R. Sun, “The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials”, Bioresour. Technol., vol. 199, p. 49-58, ene. 2016, doi: 10.1016/j.biortech.2015.08.061.

[18] S.-H. Ho, S.-W. Huang, C.-Y. Chen, T. Hasunuma, A. Kondo, y J.-S. Chang, “Bioethanol production using carbohydrate-rich microalgae biomass as feedstock”, Bioresour. Technol., vol. 135, p. 191-198, may 2013, doi: 10.1016/j.biortech.2012.10.015.

[19] L. Yan, A. A. Greenwood, A. Hossain, y B. Yang, “A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid”, RSC Adv., vol. 4, n.o 45, p. 23492, 2014, doi: 10.1039/c4ra01631a.

[20] L. Cao et al., “Optimizing xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis by response surface methodology”, J. Clean. Prod., vol. 178, p. 572-579, mar. 2018, doi: 10.1016/j.jclepro.2018.01.039.

[21] E. Guerra-Rodríguez, O. M. Portilla-Rivera, L. Jarquín-Enríquez, J. A. Ramírez, y M. Vázquez, “Acid hydrolysis of wheat straw: A kinetic study”, Biomass Bioenergy, vol. 36, p. 346-355, ene. 2012, doi: 10.1016/j.biombioe.2011.11.005.

[22] S. M. de la Rosa, “Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos”, 2015.

[23] K. Świątek, S. Gaag, A. Klier, A. Kruse, J. Sauer, y D. Steinbach, “Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation”, Catalysts, vol. 10, n.o 4, Art. n.o 4, abr. 2020, doi: 10.3390/catal10040437.

[24] Sun et al., “Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids”, Biotechnol. Biofuels, vol. 6, n.o 1, p. 39, 2013, doi: 10.1186/1754-6834-6-39.

[25] D. Aboagye et al., “Glucose recovery from different corn stover fractions using dilute acid and alkaline pretreatment techniques”, J. Ecol. Environ., vol. 41, n.o 1, p. 26, jul. 2017, doi: 10.1186/s41610-017-0044-1.

[26] K. Dussan, D. Virginio da Silva, E. Moraes, P. Arruda, y M. FELIPE, “Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse”, Chem. Eng. Trans., vol. 38, p. 433, ene. 2014, doi: 10.3303/CET1438073.

[27] Y. P. Wijaya, R. D. D. Putra, V. T. Widyaya, J.-M. Ha, D. J. Suh, y C. S. Kim, “Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass”, Bioresour. Technol., vol. 164, p. 221-231, jul. 2014, doi: 10.1016/j.biortech.2014.04.084.

[28] X. B. Lu, Y. M. Zhang, J. Yang, y Y. Liang, “Enzymatic Hydrolysis of Corn Stover after Pretreatment with Dilute Sulfuric Acid”, Chem. Eng. Technol., vol. 30, n.o 7, p. 938-944, 2007, doi: https://doi.org/10.1002/ceat.200700035.

[29] T.-C. Hsu, G.-L. Guo, W.-H. Chen, y W.-S. Hwang, “Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis”, Bioresour. Technol., vol. 101, n.o 13, p. 4907-4913, jul. 2010, doi: 10.1016/j.biortech.2009.10.009.

[30] D. Greetham, J. M. Adams, y C. Du, “The utilization of seawater for the hydrolysis of macroalgae and subsequent bioethanol fermentation”, Sci. Rep., vol. 10, n.o 1, Art. n.o 1, jun. 2020, doi: 10.1038/s41598-020-66610-9.

[31] W. Leenakul y N. Tippayawong, “Dilute acid pretreatment of bamboo for fermentable sugar production. Journal of Sustainable Energy & Environment, 1(3), 117-120.”, 2010.

[32] I. Semerci y F. Güler, “Protic ionic liquids as effective agents for pretreatment of cotton stalks at high biomass loading”, Ind. Crops Prod., vol. 125, p. 588-595, dic. 2018, doi: 10.1016/j.indcrop.2018.09.046.

[33] S. M. Sen, J. B. Binder, R. T. Raines, y C. T. Maravelias, “Conversion of biomass to sugars via ionic liquid hydrolysis: process synthesis and economic evaluation”, Biofuels Bioprod. Biorefining, vol. 6, n.o 4, p. 444-452, jul. 2012, doi: 10.1002/bbb.1336.

[34] T. G. Weldemhret et al., “Current advances in ionic liquid-based pre-treatment and depolymerization of macroalgal biomass”, Renew. Energy, vol. 152, p. 283-299, jun. 2020, doi: 10.1016/j.renene.2020.01.054.

[35] L. T. P. Trinh, Y. J. Lee, J.-W. Lee, y H.-J. Lee, “Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass”, Biomass Bioenergy, vol. 81, p. 1-8, oct. 2015, doi: 10.1016/j.biombioe.2015.05.005.

[36] R. Ratti, “Ionic Liquids: Synthesis and Applications in Catalysis”, Adv. Chem., vol. 2014, p. 729842, oct. 2014, doi: 10.1155/2014/729842.

[37] N. Zhou, Y. Zhang, X. Gong, Q. Wang, y Y. Ma, “Ionic liquids-based hydrolysis of Chlorella biomass for fermentable sugars”, Bioresour. Technol., vol. 118, p. 512-517, ago. 2012, doi: 10.1016/j.biortech.2012.05.074.

[38] S. Dee y A. T. Bell, “Effects of reaction conditions on the acid-catalyzed hydrolysis of miscanthus dissolved in an ionic liquid”, Green Chem., vol. 13, n.o 6, p. 1467-1475, jun. 2011, doi: 10.1039/C1GC15317J.

[39] J. B. Binder y R. T. Raines, “Fermentable sugars by chemical hydrolysis of biomass”, Proc. Natl. Acad. Sci., vol. 107, n.o 10, p. 4516-4521, mar. 2010, doi: 10.1073/pnas.0912073107.

[40] L. B. Malihan, G. M. Nisola, y W.-J. Chung, “Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system”, Bioresour. Technol., vol. 118, p. 545-552, ago. 2012, doi: 10.1016/j.biortech.2012.05.091.

[41] S. Kassaye, K. K. Pant, y S. Jain, “Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps”, Renew. Energy, vol. 104, p. 177-184, abr. 2017, doi: 10.1016/j.renene.2016.12.033.

[42] K. Shill, S. Padmanabhan, Q. Xin, J. M. Prausnitz, D. S. Clark, y H. W. Blanch, “Ionic liquid pretreatment of cellulosic biomass: Enzymatic hydrolysis and ionic liquid recycle”, Biotechnol. Bioeng., vol. 108, n.o 3, p. 511-520, 2011, doi: 10.1002/bit.23014.

[43] Y. Gao, T. R. Bandara, y G. J. Griffin, “Acid-catalysed hydrolysis kinetics of sugar cane bagasse to glucose and xylose in selected ionic liquid media”, IOP Conf. Ser. Earth Environ. Sci., vol. 307, p. 012005, ago. 2019, doi: 10.1088/1755-1315/307/1/012005.

[44] N. L. Mai, K. Ahn, y Y.-M. Koo, “Methods for recovery of ionic liquids—A review”, Process Biochem., vol. 49, n.o 5, p. 872-881, may 2014, doi: 10.1016/j.procbio.2014.01.016.

[45] A. M. da Costa Lopes y R. M. Łukasik, “Separation and Recovery of a Hemicellulose-Derived Sugar Produced from the Hydrolysis of Biomass by an Acidic Ionic Liquid”, ChemSusChem, vol. 11, n.o 6, p. 1099-1107, mar. 2018, doi: 10.1002/cssc.201702231.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.