Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Función Salto

Resumen

Se realiza la construcción implícita de una función estrictamente creciente, dada en el segmento [0; 1] con
el conjunto de puntos de discontinuidad, coincidente con el conjunto de números racionales diádicos del
mismo segmento.

Palabras clave

Función creciente, salto total, puntos de discontinuidad, límites laterales, función salto.

PDF

Citas

  1. V. I. Bogachev and O. G. Smolyanov, Real andfunctional analysis, Spri. Natu. Swit., Vol. 4, 2020.
  2. Capi ́nski and E. Kopp, Measure, Integral and Probability, Springer-Verlag, Edi. 2, 2004.
  3. Carter and B. V. Brunt, The Lebesgue-Stieltjes integral, Spri. Scie. Busi. Medi.,2000.
  4. H. Cramér, Mathematical methods of statistics, Prin. Univ. Pres., Edi. 9, 2016.
  5. P. Embrechts, M. Hofert, ".A note on generalized inverses", Mathematical Methods of Operations Research, vol. 77, no, 3, pp. 423-
  6. , 2013.
  7. N. Falkner, G. Teschl, ".On the substitution rule for Lebesgue-Stieltjes integrals", Expositiones Mathematicae, vol. 30, no. 4, pp, 412-418, 2012.
  8. G. Fayolle, M. Krikun, J. M. Lasgouttes, "Birth and death processes on certain random trees: classification and stationary laws", Probability Theory and Related Fields, vol. 128, no. 3, pp. 386-418, 2004.
  9. C. Feng, H. Wang, X. M. Tu, J. Kowalski, ".A Note on Generalized Inverses of Distribution Function and Quantile Transformation",
  10. Applied Mathematics, Vol. 3, no. 12A, pp. 2098-2100, 2012.
  11. S. Gentili, Measure, integration and a primer on probability theory, Spri. Natu. Swit.,Vol. 1, 2020.
  12. A. M. Haghighi and I. Wickramasinghe, Probability, Statistics, and stochastic processes for engineers and scientists,Taylor and
  13. Francis Group, 2021.
  14. T. Hawkins, Lebesgue’s Theory of Integration: Its Origins and Development, Chelsea Pub. Co, Edi. 2, 1975.
  15. F. C. Klebaner, Introduction to stochastic calculus with applications, Imp. Col. Pres., Edi. 3, 2012.
  16. E. P. Klement, R. Mesiar "Quasi and pseudo-inverses of monotone functions, and the construction of t-norms", Elsevier, Fuzzy
  17. Sets and Systems vol. 104, no. 1, pp 3-13, 1999.
  18. A. N. Kolmogorov and S. V. Fomin, Introductorr real analysis, R. A. Silverman, Dove. publ. New York, 1975.
  19. J. K. Peterson, Basic Analysis IV: Measure Theory and Integration, CRC Press, Edi. 1, 2021.
  20. P. E. Pfeiffer, Probability for applications, Spri. Verl. New York Incm, 1990.
  21. V. S. Pugachev and I. N. Sinitsyn, Lectures on functional analysis and applications, I.V. Sinitsvna, Worl. Scie. Publ. Comp, Edi. 1, 1999.
  22. H. L. Royden and P. M. Fitzpatrick, Real analysis, Pren. Hall, Edi. 4, 2010.
  23. R. Serfling, "Quantile functions for multivariate analysis: approaches and applications", Statistica Neerlandica, Vol. 56, no. 2, pp.
  24. -232, 2002.
  25. P. Vicenik, .Anote to a construction of t-norms based on pseudo-inverses of monotone functions", Elsevier, Fuzzy Sets and Systems
  26. vol. 104, no. 1, pp 15-18, 1999.
  27. A. J. Weir, Lebesgue integration and measue, Camb. Univ. Pres., 1973.
  28. R. L. Wheeden and A. Zygmund, Measure and integral. An Introduction to Real Analysis, Taylor and Francis, Edi. 2, 2015.
  29. J. Yeh, Real analysis theory of measure and integration, World. Scie. Publ. Co., Edi. 3, 2014.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.