Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efecto de la concentración de Ga sobre las propiedades electrónicas del CuIn1−XGaXSe2

Resumen

Se reportan cálculos de propiedades electrónicas del compuesto CuIn1−xGaxSe2 (x = 0,0, 0,2, 0,4, 0,6, 0,8, 1,0), usando el método Tight-Binding (TB) y Virtual Crystal Approximation (VCA). Se considera el caso ideal y con las distorsiones tetragonal (η) y aniónica (μ). En ambos casos, el CuIn1−xGaxSe2 es un semiconductor directo en Γ, para todas las concentraciones. Se encontró que el Crystal Field Splitting (CFS) en el punto Γ depende principalmente de la distorsión tetragonal. El CFS es positivo para x &lt, 0,32 y negativo para x &gt, 0,32. Este comportamiento se debe a que cuando aumenta x, la celda unitaria se contrae, acercando el pseudoátomo (In,Ga) al átomo de Se.

Palabras clave

CuIn1−xGaxSe2, Tight-Binding, aproximación de cristal virtual, Crystal Field Splitting. (CuIn1-xGaxSe2, Virtual Crystal Approximation, Crystal Field Splitting)

PDF

Citas

  1. J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, and W. Schock, “ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance”, in Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, pp. 364-371, May 1993.
  2. M. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, “Progress toward 20% eciency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells”, Prog. Photovolt: Res. Appl., vol. 7, pp. 311-316, August 1999. DOI: https://doi.org/10.1002/(SICI)1099-159X(199907/08)7:4<311::AID-PIP274>3.0.CO;2-G
  3. M. Contreras, A. M. Gabor, A. L. Tenant, S. Asher, J. Tuttle, and R. Noufi, “Accelerated publication 16.4% total-area conversion
  4. eciency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell”, Prog. Photovolt: Res. Appl., vol. 2, pp. 287-292, DOI: https://doi.org/10.1002/pip.4670020404
  5. October 1994.
  6. J. R. Tuttle, M. A. Contreras, A. M. Gabor, K. R. Ramanathan, A. L.Tennant, D. S. Albin, J. Keane, and R. Noufi, “Perspective on High-efficiency Cu(In, Ga)Se2-based Thin-film Solar Cells Fabricated by Simple, Scalable Processes”, Prog. Photovolt: Res. Appl., vol. 3, DOI: https://doi.org/10.1002/pip.4670030603
  7. -391, November 1995.
  8. J. R. Tuttle, J. S. Ward, A. Duda, T. A. Berens, M. A. Contreras, K. R. Ramanathan, A. L. Tennant, J. Keane, E. D. Cole, K. Emery, and
  9. R. Nouri, “The Performance of Cu(In,Ga)Se2- Based Solar Cells in Conventional and Concentrator Applications”, Mater. Res. Soc. Symp.,
  10. vol. 426, 143-151, 1996.
  11. J. R. Tuttle, M. Contreras, A. Tennant, D. Albin, and R. Noufi, “High eciency thin-film Cu (In, Ga) Se2-based photovoltaic devices:
  12. progress towards a universal approach to absorber fabrication”, in Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, pp.
  13. -421, May 1993.
  14. K. R. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J.
  15. S. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Prog. Photovolt: Res. Appl., vol.11, pp. 225-230, June 2003. DOI: https://doi.org/10.1002/pip.494
  16. R. W. Birkmire, J. R. Sites, “Polycrystalline compound thin film devices: Laboratory cells to modules”, in: IEEE (Ed.), 28th IEEE PVSC
  17. (Photovoltaic Specialist Conference), IEEE, Anchorage, AK, USA, 2-11, 2000.
  18. T. Suárez, D. Rasero, R. Jiménez, and J. Arbey Rodríguez, “Cu(InGa)Se2: Un estudio de la estructura electrónica usando Tight-Binding, Aproximación de Cristal Virtual y Método de Montecarlo”, Rev. Col. Fis., vol. 41, pp. 268- 270, abril 2009.
  19. J. C. Slater, and G. F. Koster, “Simplified LCAO Method for the Periodic Potential Problem”, Phys. Rev., vol. 94, pp. 1498-1524, June DOI: https://doi.org/10.1103/PhysRev.94.1498
  20. F. A. P. Blom,“Determination of the Fermi Surface in CdSnAs using a Tight-Binding Model for Chalcopyrites”, Phys. Rev. B, vol. 32, pp. 2334-2336, August 1985. DOI: https://doi.org/10.1103/PhysRevB.32.2334
  21. J. A. Rodríguez, “Estructura de Bandas de las Calcopiritas basadas en Cobre”, Tesis doctoral, Departamento de Física, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, D.
  22. C., 1999.
  23. J. A. Rodríguez, L. Quiroga, A. Camacho, and R. Baquero, “Electronic Band Structure of CuInSe2: Bulk and (112) surface”, Phys. Rev. B,, vol. 59, pp. 1555-1558, January 1999. DOI: https://doi.org/10.1103/PhysRevB.59.1555
  24. R. Hill, “Energy-gap Variations in Semiconductor Alloys”, J. Phys. C: Solid State Phys.,vol. 7, pp. 521-526, February 1974. DOI: https://doi.org/10.1088/0022-3719/7/3/009
  25. R. D. Olguín, “Estructura Electrónica de Compuestos Semiconductores Nuevos II-VI: Superficies y Heteroestructuras”, Tesis doctoral, Departamento de Física, Centro de Investigaciones
  26. y de Estudios Avanzados del IPN (CINVESTAV), México, D. F., México, 1996.
  27. J. Jae, A. Zunger, “Electronic Structure of the Ternary Chalcopyrite Semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2”, Phys. Rev. B, vol. 28, pp. 5822-
  28. , November 1983.
  29. J. Jae, and A. Zunger, “Theory of the Bandgap Anomaly in ABC2 Chalcopyrite Semiconductors”, Phys. Rev. B, vol. 29, pp. 1882-1906,
  30. February 1984.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.