Optimal Population Designs for Discrimination Between Two Nested Nonlinear Mixed Effects Models.

Contenido principal del artículo

Autores

M. E. Castañeda L.
V. I. López-Ríos

Resumen

In this paper we consider the problem of finding optimal population designs for discrimination between
two nested nonlinear mixed effects models which differ in their intra-individual covariance matrix. The
criterion proposed is a generalization of the T-optimality criterion. For this criterion an equivalence theorem is provided. The application of the criterion is illustrated with an example in pharmacokinetic.


 

Palabras clave:

Detalles del artículo

Referencias

[1] A. C. Atkinson, and V. V. Fedorov, “The design of experiments for discriminating between two rival models”, Biometrika, vol. 62, pp. 57-70, 1975.

[2] K. Bollen, “Estructural Equations with Latents Variables”, John Wiley & Sons, New York, Inc, 1989.

[3] M. Davidian, and D. M. Giltinan, “Nonlinear Models for Repeated Measurement Data”, Chapman & Hall, London, 1995.

[4] E. Demidenko, “Mixed Models: Theory and Applications”, John Wiley & Sons Inc, New York, 2004.

[5] V. V. Fedorov, and P. Hackl, “Model-Oriented Design of Experiments”, Springer, New York, 1997.

[6] R. Gagnon, and S. Leonov, “Optimal population designs for PK models with serial sampling”, Journal of Biopharmaceutical Statistics, vol. 15, pp. 143-163, 2005.

[7] D. Hand, and M. Crowder, “Practical Longitudinal Data Analysis”, Chapman & Hall, London, 1996.

[8] Y. Hashimoto, and L. Sheiner, “Designs for population pharmacodynamics: value of pharmacokinetic data and population analysis”, Journal of Pharmacokinetics and Biopharmaceutics, vol. 19, pp. 333-353, 1991.

[9] B. Kuczewski, B. Bogacka, and D. Uci´nski, “Optimum designs for discrimination between two nonlinear multivariate dynamic mixedeffects models”, Biometrical Letters, vol. 45, pp. 1-28, 2008.

[10] F. Mentré, P. Burtin, Y. Merlé, J. Bree, A. Mallet, and J. Steimer, “Sparse-sampling optimal designs in pharmacokinetics and toxicokinetics”, Drug Information Journal, vol. 29, pp. 997-1019, 1995.

[11] F. Mentré, A. Mallet and D. Baccar, “Optimal design in random-effects regression models”, Biometrika, vol. 84, pp. 429-442, 1997.

[12] J. C. Pinheiro and D. M. Bates, “Mixed-Effects Models in S and S-PLUS”, Springer, New York, 2000.

[13] B. N. Pshenichny, “Necessary Conditions for an Extremum”, Marcel Dekker, New York, 1971.

[14] F. Pukelsheim, Optimal Design of Experiments, John Wiley & Sons Inc, New York, 1993.

[15] R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2014, ISBN 3-900051-07-0, [Online], Available: http://www.R-project.org.

[16] J. H. Steiger, A. Shapiro, and W. Browne, “Onthe multivariate asymptotic distribution of sequential Chi-Square statistics”, Psychometrika, vol. 50, pp. 253-264, 1985.

[17] T. W. Stroud, “Fixed alternatives and Wald’s formulation of the noncentral asymptotic behavior of the likelihood ratio statistic”, Annals
of Mathematical Statistics, vol. 43, pp. 447- 454, 1972.

[18] D. Uci´nski, and B. Bogacka, “T-optimum designs for multiresponse dynamic heteroscedastic models”, mODa 7- Advances in Modeloriented Design and Analysis, eds A. Di Bucchianico,
H. L¨auter and H. P. Wynn, pp. 191- 199, Heidelberg: Physica, 2004.

[19] D. Uci´nski, and B. Bogacka, “T-optimum designs for discrimination between two multiresponse dynamic models”, Journal of the Royal Statistical Society: Series B, vol. 67, pp.3-18, 2005.

[20] P. Vajjah, and S. Duffull, “A generalisation of T-optimality for discriminating between competing models with an application to pharmacokinetic studies”, Pharmaceutical Statistics, vol. 11, pp. 503-510, 2012.

[21] E. F. Vonesh, and V. M. Chinchilli, “Linear and Nonlinear Models for The Analysis of Repeated Measures”, Marcel Dekker, New York,
1997.

[22] T. H. Waterhouse, S. Redmann, S. B. Duffull and J. A. Eccleston, “Optimal design for model discrimination and parameter estimation for itraconazole population pharmacokinetics in cystic fibrosis patients”, Journal of Pharmacokinetics and Pharmacodynamics, vol. 32, pp.
521-545, 2005.

Descargas

La descarga de datos todavía no está disponible.