Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Optimal Population Designs for Discrimination Between Two Nested Nonlinear Mixed Effects Models.

Resumen

In this paper we consider the problem of finding optimal population designs for discrimination between
two nested nonlinear mixed effects models which differ in their intra-individual covariance matrix. The
criterion proposed is a generalization of the T-optimality criterion. For this criterion an equivalence theorem is provided. The application of the criterion is illustrated with an example in pharmacokinetic.

 

Palabras clave

Optimal Designs, Mixed Effects Model, T-Optimal Designs. (Diseños T-óptimos, diseños óptimos, modelo de efectos mixtos.)

PDF

Citas

  1. A. C. Atkinson, and V. V. Fedorov, “The design of experiments for discriminating between two rival models”, Biometrika, vol. 62, pp. 57-70, 1975. DOI: https://doi.org/10.1093/biomet/62.1.57
  2. K. Bollen, “Estructural Equations with Latents Variables”, John Wiley & Sons, New York, Inc, 1989. DOI: https://doi.org/10.1002/9781118619179
  3. M. Davidian, and D. M. Giltinan, “Nonlinear Models for Repeated Measurement Data”, Chapman & Hall, London, 1995.
  4. E. Demidenko, “Mixed Models: Theory and Applications”, John Wiley & Sons Inc, New York, 2004. DOI: https://doi.org/10.1002/0471728438
  5. V. V. Fedorov, and P. Hackl, “Model-Oriented Design of Experiments”, Springer, New York, 1997. DOI: https://doi.org/10.1007/978-1-4612-0703-0
  6. R. Gagnon, and S. Leonov, “Optimal population designs for PK models with serial sampling”, Journal of Biopharmaceutical Statistics, vol. 15, pp. 143-163, 2005. DOI: https://doi.org/10.1081/BIP-200040853
  7. D. Hand, and M. Crowder, “Practical Longitudinal Data Analysis”, Chapman & Hall, London, 1996. DOI: https://doi.org/10.1007/978-1-4899-3033-0
  8. Y. Hashimoto, and L. Sheiner, “Designs for population pharmacodynamics: value of pharmacokinetic data and population analysis”, Journal of Pharmacokinetics and Biopharmaceutics, vol. 19, pp. 333-353, 1991. DOI: https://doi.org/10.1007/BF03036255
  9. B. Kuczewski, B. Bogacka, and D. Uci´nski, “Optimum designs for discrimination between two nonlinear multivariate dynamic mixedeffects models”, Biometrical Letters, vol. 45, pp. 1-28, 2008.
  10. F. Mentré, P. Burtin, Y. Merlé, J. Bree, A. Mallet, and J. Steimer, “Sparse-sampling optimal designs in pharmacokinetics and toxicokinetics”, Drug Information Journal, vol. 29, pp. 997-1019, 1995. DOI: https://doi.org/10.1177/009286159502900321
  11. F. Mentré, A. Mallet and D. Baccar, “Optimal design in random-effects regression models”, Biometrika, vol. 84, pp. 429-442, 1997. DOI: https://doi.org/10.1093/biomet/84.2.429
  12. J. C. Pinheiro and D. M. Bates, “Mixed-Effects Models in S and S-PLUS”, Springer, New York, 2000. DOI: https://doi.org/10.1007/978-1-4419-0318-1
  13. B. N. Pshenichny, “Necessary Conditions for an Extremum”, Marcel Dekker, New York, 1971.
  14. F. Pukelsheim, Optimal Design of Experiments, John Wiley & Sons Inc, New York, 1993.
  15. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna,
  16. Austria, 2014, ISBN 3-900051-07-0, [Online], Available: http://www.R-project.org.
  17. J. H. Steiger, A. Shapiro, and W. Browne, “Onthe multivariate asymptotic distribution of sequential Chi-Square statistics”, Psychometrika, vol. 50, pp. 253-264, 1985. DOI: https://doi.org/10.1007/BF02294104
  18. T. W. Stroud, “Fixed alternatives and Wald’s formulation of the noncentral asymptotic behavior of the likelihood ratio statistic”, Annals
  19. of Mathematical Statistics, vol. 43, pp. 447- 454, 1972. DOI: https://doi.org/10.1214/aoms/1177692625
  20. D. Uci´nski, and B. Bogacka, “T-optimum designs for multiresponse dynamic heteroscedastic models”, mODa 7- Advances in Modeloriented Design and Analysis, eds A. Di Bucchianico,
  21. H. L¨auter and H. P. Wynn, pp. 191- 199, Heidelberg: Physica, 2004.
  22. D. Uci´nski, and B. Bogacka, “T-optimum designs for discrimination between two multiresponse dynamic models”, Journal of the Royal Statistical Society: Series B, vol. 67, pp.3-18, 2005. DOI: https://doi.org/10.1111/j.1467-9868.2005.00485.x
  23. P. Vajjah, and S. Duffull, “A generalisation of T-optimality for discriminating between competing models with an application to pharmacokinetic studies”, Pharmaceutical Statistics, vol. 11, pp. 503-510, 2012. DOI: https://doi.org/10.1002/pst.1542
  24. E. F. Vonesh, and V. M. Chinchilli, “Linear and Nonlinear Models for The Analysis of Repeated Measures”, Marcel Dekker, New York,
  25. T. H. Waterhouse, S. Redmann, S. B. Duffull and J. A. Eccleston, “Optimal design for model discrimination and parameter estimation for itraconazole population pharmacokinetics in cystic fibrosis patients”, Journal of Pharmacokinetics and Pharmacodynamics, vol. 32, pp. DOI: https://doi.org/10.1007/s10928-005-0026-2
  26. -545, 2005.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 > >> 

También puede {advancedSearchLink} para este artículo.