Caracterización y extracción lipídica de las semillas del cacao amazónico [Theobroma grandiflorum]. (Characterization and Lipid Extraction of Amazon Cocoa Seeds [Theobroma grandiflorum].)

Contenido principal del artículo

Autores

E. Alviárez G.
W. Murillo A.
E. Murillo P.
B. A. Rojano
J. J. Méndez A.

Resumen

Resumen

La pulpa de Theobroma grandiflorum, conocido comúnmente como copoazú, es utilizada para la preparación de mermeladas, jugos, yogurt, néctares y dulces, y sus semillas son aprovechadas para la elaboración de cupulate, bebida equivalente al chocolate. En Colombia existe poca información sobre las propiedades de este fruto, especialmente de los ácidos grasos presentes en las semillas, las cuales podrían ser de gran interés para la industria alimentaria. En este estudio se identificó y analizó el contenido de ácidos grasos presentes en el aceite extraído de las semillas de copoazú en madurez fisiológica y sus índices de calidad, además, se midió el potencial antioxidante del aceite mediante el ensayo ORAC, lo anterior como aproximación al conocimiento del uso potencial alimenticio o nutracéutico de uno de los frutos exóticos de la amazonia de poco conocimiento en Colombia. La identificación de ácidos grasos reveló que hay mayor contenido de ácido oleico (36,3%), esteárico (29,27%) y palmítico (7,26%), los índices de calidad, como la saponificación (1,88,15 mg KOH/g muestra), yodo (49,33 g de I/g de grasa) y acidez (1,04 mg KOH/g muestra), muestran que el aceite de copoazú podría ser utilizado en la industria alimentaria y cosmética. 

 

Abstract

The pulp from Theobroma grandiflorum, commonly known as Copoazú, is used to prepare jams, juices,
yogurt, and nectars and sweets, while their seeds are exploited for the development of cupulate, a beverage which is the equivalent to chocolate. In Colombia, there are few reports about the properties of this fruit, especially about the fatty acids from its seeds, which could be of great interest in the food industry. Therefore, in this study were identified and analyzed the fatty acids content, which are present in the Copoazú seeds extracted oil, in its physiological maturity and analyzed its qualities indices. Also the fat antioxidant potential was measured by the ORAC essay. The above approach to understand the nourishing potential use of the food and/or nutraceutical, in one of the Amazon exotic fruits little known in Colombia. The identification of fatty acids showed that there is a high content of oleic (36.3%), stearic (29.27%) and palmitic acid (7.26%), plus, the qualities indices like the saponification (1.88,15 mg KOH/g sample), iodine (49.33 g de I/g oil) and acid (1.04 mg KOH/g sample) show that Copoazu oil could be used in food and cosmetic industries.


Palabras clave:

Detalles del artículo

Referencias

[1] S. Rojas, J. Zapata, E. Pereira y E. Varon, El cultivo del copoazú (Theobroma grandiflorum) en el piedemonte amazónico colombiano. Corpoica, Convenio de Cooperación Gobierno deColombia- Unión Europea, 1998.

[2] G. A. Bataglion, F M. da Silva, J. M. Santos, F. N. dos Santos, M. T. Barcia, C. C. de Lourenço, M. Salvador, H. Godoy, M. Eberlin, and H.
H. Koolen, “Comprehensive characterization of lipids from Amazonian vegetable oils by mass spectrometry techniques”, Food Research International, vol. 64, pp. 472-481, 2014.

[3] M. B. MacLenan, S. E. Clarke, K. Pére, G. A. Madera, W. J. Muller, J. X. Kang, and D. W. Ma, “Mammary tumor development is directly
inhibited by lifelong n-3 polyunsaturated fatty acids”, The Journal of nutritional biochemistry, vol. 24, no. 1, pp. 388-395, 2013.

[4] C. Belén, I. López, J. Barranco, D. García, M. Moreno y O. Linares, “Caracterización fisicoquímica del aceite de la semilla de Píritu
(Bactris piritu (H. Karst) H. Wendl)”. Grasas y Aceites, vol. 55, no. 2, pp. 138-142, doi: 10.3989/gya.2004.v55.i2.158, 2004.

[5] B. Camacho, I. López, D. García, M. González, M. Moreno-Álvarez y C. Medina, “Evaluación fisico-química de la semilla y del aceite de corozo (Acrocomia aculeata Jacq.)”. Grasas y aceites, vol. 56, no. 4, pp. 311-316, 2005.

[6] L. Masson, C. Camilo y E. Torija. “Caracterización del aceite de coquito de palma chilena (Jubaea chilensis)”. Rev. Grasas y aceites, vol. 59, no. 1, pp. 33-38, doi: 10.3989/gya.2008.v59.i1.487 (2008).

[7] L. P. Aquino, S. V. Borges, F. Queiroz, R. Antoniassi, ans M. A. Cirillo, “Extraction of oil from pequi fruit (Caryocar Brasiliense, Camb.)
using several solvents and their mixtures”, Grasas y Aceites, vol. 62, no. 3, pp. 245-252, 2011.

[8] S. Raziq, F. Anwar, Z. Mahmood, S. A. Shahid, and R. Nadeem, “Characterization of seed oils from dierent varieties of watermelon Citrullus lanatus (Thunb.) from Pakistan”, Grasas y aceites, vol. 63, no. 4, pp. 365-372, 2012.

[9] M. Manzoor, F. Anwar, M. Ashraf, and K. M. Alkharfy, “Physico-chemical characteristics of seed oils extracted from dierent apricot (Prunus armeniaca L.) varieties from Pakistan”, Grasas y aceites, vol. 63, no. 2, pp. 193-201, 2012.

[10] Z. Y. Petkova, and G. A. Antova, “Changes in the composition of pumpkin seeds (Cucurbita moschata) during development and maturation”, Grasas y Aceites, vol. 66, no. 1, e058,
2015.

[11] S. Lannes, M. Medeiros, and L. Gioielli. “Rheological properties of cupuassu and cocoa fats”, Grasas y Aceites, vol. 55, no. 2, pp. 115-121, doi: 10.3989/gya.2004.v55.i2.154, 2004.

[12] L. Quast, V. Luccas, and T. Kieckbusch, “Physical properties of pre-crystallized mixtures of cocoa butter and cupuassu fat”, Grasas
y Aceites, vol. 62, no. 1, pp. 62-67, doi: 10.3989/gya.034010, 2011.

[13] E. Kuskoski, A. Asuero, A. Troncoso, J. Mancini-Filho y R. Fett, “Aplicación de diversos métodos químicos para determinar actividad
antioxidante em pulpa de frutos”, Cienc. Tecnol. Aliment., vol. 25, pp. 726-732, 2005.

[14] E. Alviárez, J.J. Mendez, B. Rojano, W. Murillo y C. Stringheta, “Poster Avaliação da atividade antioxidante da polpa, identificação dos
ácidos graxos e propriedades da gordura do cupuaçu (Theobroma grandiflorum)”, Simposio Latinoamericano de Ciência de Alimentos,
Ciencia de Alimentos: Impacto na nutrição e saúde, 2013.

[15] H. Yang, P. Protiva, B. Cui, C. MA, S. Baggett, and E. Hequet, “New Bioactive Polyphenols from Theobroma grandiflorum (“Cupuacü”)”, Journal of Natural Products, vol. 66, no. 11,
pp. 1501-1504, 2003.

[16] E. Murillo y J. J. Méndez, Guía metodológica para la detección rápida de algunos núcleos secundarios y caracterización de una droga cruda, Universidad del Tolima, Facultad de Ciencias, Departamento de Química, GIPRONUT, 2011.

[17] P. Zuta, B. Simpson, X. Zhao, and L. Leclerc, “The eect of -tocopherol on the oxidation of mackerel oil”, Food Chem., vol. 100, no. 2, pp. 800-807, 2007.

[18] B. Ou, D. Huang, M. Hampsch-Woodill, J. Flanagan, and E. Deemer, ”Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study”, Journal of Agricultural and Food Chemistry, vol. 50, no. 11,
pp. 3122-3128, 2002.

[19] S. Litescu, S. Eremia, A. Tache, I. Vasilescu, and G. Radu, “The Use of Oxygen Radical Absorbance Capacity (ORAC) and Trolox Equivalent Antioxidant Capacity (TEAC) Assays in the Assessment of Beverages’ Antioxidant Properties”, en Processing and impact on antiantioxidants in beverages, Capítulo 25, p. 245-249,
2014.

[20] L.M. Melgarejo, M. S. Hernández, J. A. Barrera y M. Carrillo, Oferta y potencialidades de un banco de germoplasma del género Theobroma en el enriquecimiento de los sistemas productivos de la región amazónica, Instituto Amazónico de Investigaciones Científicas
“SINCHI”, p. 157, 2006.

[21] J. Sánchez, E. Osorio, A. Montaño y M. Martínez, “Estudio del contenido em ácidos grasos de aceites monovarietales elaborados a partir de aceitunas producidas en la región extremeña”, Grasas y Aceites, vol. 54, no. 4, pp. 371-377, 2003.

[22] D. Rozo y L. Velasco, Automatización del proceso de esterilización en la extracción de aceite de palma africana, Instituto de Investigación y Desarrollo de Tecnologías Aplicadas, IIDTA, Universidad de Pamplona, Pamplona, Colombia, 2007.

[23] J. Lafont, M. Páez, and A. Portacio, A., “Extracción y caracterización fisicoquímica del aceite de la semilla (almendra) del marañón (Anacardium occidentale L)”, Información Tecnológica, vol. 22, no. 1, pp. 51-58, 2011.

[24] J. Santos, I. Santos, and A. Souza, “Eect of heating and cooling on rheological parameters of edible vegetable oils”, Journal of Food Engineering, vol. 67, no. 4, pp. 401-405, 2005.

[25] S. Mennickent, M. Bravo, C. Calvo y M. Avello, “Efectos pleiotrópicos de las estatinas”, Rev. méd. Chile, vol. 136, no. 6, pp.) 775-782, 2008.

[26] J. Liao, and U. Laufs, “Pleiotropic eects of statins”, Annu Rev Pharmacol Toxicol, vol. 45, pp. 89-118, 2005.

[27] M. Gordon, “The development of oxidative rancidity in foods”. In: Antioxidants in ffood, Cambridge: CRC Press, pp. 10, 2001.

Descargas

La descarga de datos todavía no está disponible.