Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

The Transient and Asymptotic Moments for the Random Mission Time of a System / Los momentos transitorios y estables para el tiempo de misión de un sistema

Resumen

Abstract

In this paper, we study fault tolerant systems having one or more components and its system availability
over the random mission time. The mission time is the time that elapses since the initial operation of
the system until its cumulative working time achieves a predetermined fixed time. The main objective of
this paper is to obtain the transient and asymptotic moments for the random mission time of the system
availability subject to failures, as well as its distribution function, by using the theory of link travel time
distributions. A numerical example is presented to show usefulness of the proposed model.

 

Resumen

En este artículo se estudian sistemas tolerantes a fallas con uno o más componentes, y su disponibilidad durante el tiempo aleatorio de misión. El tiempo de misión es aquél que transcurre desde la operación inicial del sistema hasta que su tiempo acumulado de trabajo alcanza un tiempo fijo predeterminado. El objetivo principal del artículo es la obtención de los momentos transitorios y estables del tiempo de misión de la disponibilidad del sistema sujeto a fallas, así como el análisis de su función de distribución, mediante el uso de la teoría de las distribuciones de tiempo de viaje de un móvil, que transita por un número finito de caminos, en los que la velocidad promedio del móvil varía de camino a camino. Un ejemplo numérico se presenta para mostrar la utilidad del modelo propuesto.


Palabras clave

Mission time, cumulative up-time, transients moments, asymptotic moments

PDF (English)

Biografía del autor/a

Alvaro Calvache Archila

Docente de Matemáticas - UPTC


Citas

  1. V. Arunachalam, A. Calvache, and A. Tansu, “Some Useful Approximations for the Availability Function”, International Journal of Reliability, Quality and Safety Engineering, vol. 22, pp. 155008 1 155008 15, 2015. DOI: https://doi.org/10.1142/S0218539315500084
  2. V. Arunachalam, S. Dharmaraja, “Fluid Queue Driven by Finite State Markov Processes”, Ciencia en Desarrollo, vol. 5, no. 2, pp. 79- 86, 2014. DOI: https://doi.org/10.19053/01217488.3662
  3. D.S. Berry, and D.M. Belmont, “Distribution of Vehicle Speeds and Travel Times”, Proceedings of the Second Berkeley Symposium on
  4. Mathematical Statistics and Probability, pp. 589-602, 1951.
  5. L. Blanco, V. Arunachalam, and S. Dharmaraja, “Introduction to Probability and Stochastic Processes with Applications”, Wiley, New Jersey, 2012.
  6. M. Chen, and S. Chien, “Dynamic freeway travel time prediction using probe vehicle data: Link-based vs. Path-based”, Transportation Research Record, vol. 1768, pp. 157-161, 2001. DOI: https://doi.org/10.3141/1768-19
  7. M. D’Angelo, H.M. Haitham, and M.C. Wang, “Travel-time prediction for freeway corridors”, Transportation Research Board, vol. 1676, pp. 184-191, 1999. DOI: https://doi.org/10.3141/1676-23
  8. E. De Souza e Silva, and H. R. Gail, “Calculating Cumulative Operational Time Distributions of Repairable Computer Systems”, IEEE, Transactions on Computers vol. 35, pp. 322- 332, 1986. DOI: https://doi.org/10.1109/TC.1986.1676765
  9. L. Donatiello, and B. Iyer, “Closed-Form solution for system availability distribution”, IEEE, Transactions on reliability, vol. 36, pp. 45-47, 1987. DOI: https://doi.org/10.1109/TR.1987.5222291
  10. A. Goyal, and A.N. Tanwani, “A measure of guaranteed availability and its numerical evaluation”, IEEE Transactions on Computers vol.
  11. , pp. 25-32, 1988. DOI: https://doi.org/10.1039/ap9882500032
  12. J. Kharoufeh, and N. Gautam, “A fluid queueing model for link travel time moments”, Naval Research Logistics Quarterly, vol. 51, pp. 242- 257, 2004. DOI: https://doi.org/10.1002/nav.10114
  13. J. Kharoufeh, and N. Gautam, “Deriving Link Travel-Time Distributions via Stochastic Speed Processes”, Transportation Science, vol. 38, pp. 97-106, 2004. DOI: https://doi.org/10.1287/trsc.1030.0048
  14. L. A. Molano, “Interpolación polinomial, algunas técnicas y su programación”, Ciencia en Desarrollo, vol. 4, no. 1, pp. 43-69, 2012. DOI: https://doi.org/10.19053/01217488.476
  15. D. Roden, “Forecasting Travel Time”, Transportation Research Record, vol. 1518, pp. 7-12, 1996. DOI: https://doi.org/10.1177/0361198196151800102
  16. G. Rubino, and B. Sericola, “Interval availability analysis using operational periods”, Perfomance Evaluation, vol. 14, pp. 257-272, 1992. DOI: https://doi.org/10.1016/0166-5316(92)90008-5
  17. B. Sericola, “Closed-Form solution for the distribution of the total time spent in a subset of states of a homogeneous Markov Process during a finite observation period”, Journal of Applied Probability, vol. 27, pp. 713-719, 1990. DOI: https://doi.org/10.2307/3214555
  18. L. Vanajakshi, S.C. Subramanian, and R. Sivanandan, “Travel time prediction under heterogeneous trafic conditions using global positioningsystem data from buses”, Intelligent Transport Systems, vol. 3, pp. 1-9, 2009. DOI: https://doi.org/10.1049/iet-its:20080013

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.