Síntesis De Una Base De Schiff A Partir De Dopamina Y Cinamaldehído

Autores/as

DOI:

https://doi.org/10.19053/01217488.v12.n2.2021.8500

Palabras clave:

cinamaldehído, dopamina, base de Schiff

Resumen

En el presente trabajo de investigación se reportan evidencias de la síntesis de una base de Schiff, a partir de dopamina y cinamaldehído, obtenida mediante condensación por vía húmeda. El compuesto se analizó por espectroscopia de infrarrojo y de ultravioleta visible y se compararon los resultados experimentales con los obtenidos mediante el método computacional de Teoría de la Densidad Funcional (DFT). Los análisis permitieron confirmar la obtención de la especie química: 4-(2-{[(1E,2E)-3-fenilprop-2-en-1-iliden]amino}etil)benzeno-1,2-diol.

JEL Classification

Array

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

C. Godoy-Alcántar, A. K. Yatsimirsky, and J. M. Lehn, "Structure-stability correlations for imine formation in aqueous solution," Journal of Physical Organic Chemistry, vol. 18, pp. 979-985, 2005. DOI: https://doi.org/10.1002/poc.941

Y. Hijji, R. Rajan, H. B. Yahia, S. Mansour, A. Zarrouk, and I. Warad, "One‐pot microwave‐assisted synthesis of water‐soluble pyran‐2,4,5‐triol glucose amine schiff base derivative: Xrd/hsa interactions, crystal structure, spectral, thermal and a DFT/TD‐DFT," Crystals, vol. 11, pp. 1-14, 2021. DOI: https://doi.org/10.3390/cryst11020117

L. Zhao, S. Liu, Y. Cai, and J. Chen, "A New Synthesis of the Schiff Base Derived from 2, 3, 4- Trihydroxybenzaldehyde and 4-Aminobenzoic Acid via Airflow Grinding Technology," in IOP Conference Series: Earth and Environmental Science, 2020. DOI: https://doi.org/10.1088/1755-1315/565/1/012046

D. S. Chauhan, M. A. J. Mazumder, M. A. Quraishi, K. R. Ansari, and R. K. Suleiman, "Microwave-assisted synthesis of a new Piperonal-Chitosan Schiff base as a bio-inspired corrosion inhibitor for oil-well acidizing," International Journal of Biological Macromolecules, vol. 158, pp. 231-243, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.195

M. T. Asadi, Susan; Mohammadi, Khosro, "Synthesis, characterization, and thermodynamics of some new unsymmetrical Schiff bases of salicylaldehyde with 3,4-diaminopyridine and their cobalt(III) complexes," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 122, pp. 676-681, 2014. DOI: https://doi.org/10.1016/j.saa.2013.09.098

S. H. Rahaman, R. Ghosh, and B. K. Ghosh, "Heteromeric hydrogen bonded 2D supramolecule using heptacoordinated end-on azido bridged centrosymmetric dinuclear cadmium(II)Schiff base building block," Inorganic Chemistry Communications, vol. 9, pp. 1011-1014, 2006. DOI: https://doi.org/10.1016/j.inoche.2006.04.020

A. B. K. Subhash B Junne, Sainath B Zangade, Saheb L Shinde, Yeshwant B Vibhute, "Synthesis and antibacterial activity of some new schiff bases and 2-Azetidinones containing iodohyydroxy biphenyl moiety," BANGLADESH JOURNAL OF PHARMACOLOGY, vol. 10, pp. 555-561, 2015.

B. Shipra and C. Sumitra, "Synthesis and Investigation of Antibacterial activity of Some Schiff bases," Journal of Chemical, Biological and Physical Sciences (JCBPS), vol. 2, pp. 1176-1183, May-Jul 2012.

K.-R. Aggarwal-Nisha, Dureja-Prem, Rawat-Diwan S., "Schiff Bases as Potential Fungicides and Nitrification Inhibitors," Journal of Agricultural and Food Chemistry, vol. 57, pp. 8520-8525, 2009. DOI: https://doi.org/10.1021/jf902035w

T. Aboul-Fadl, A. A. Radwan, M. I. Attia, A. Al-Dhfyan, and H. A. Abdel-Aziz, "Schiff bases of indoline-2,3-dione (isatin) with potential antiproliferative activity," Chemistry Central Journal, vol. 6, p. 49, 2012. DOI: https://doi.org/10.1186/1752-153X-6-49

S. Adsule, V. Barve, D. Chen, F. Ahmed, Q. P. Dou, S. Padhye, et al., "Novel Schiff Base Copper Complexes of Quinoline-2 Carboxaldehyde as Proteasome Inhibitors in Human Prostate Cancer Cells," Journal of Medicinal Chemistry, vol. 49, pp. 7242-7246, 2006. DOI: https://doi.org/10.1021/jm060712l

J. Joseph and K. Nagashri, "Novel Copper-Based Therapeutic Agent for Anti-Inflammatory: Synthesis, Characterization, and Biochemical Activities of Copper(II) Complexes of Hydroxyflavone Schiff Bases," Applied Biochemistry and Biotechnology, vol. 167, pp. 1446-58, 2012. DOI: https://doi.org/10.1007/s12010-011-9529-z

U. Markandan, A. Ekamparam, and R. Rangappan., "Synthesis and spectral investigations of binuclear Schiff base metal complexes derived from 1, 5-diaminonaphthalene," Journal of Chemical, Biological and Physical Sciences (JCBPS), vol. 2, pp. 677-682, 2012.

G. D. Yadav and M. S. Krishnan, "An Ecofriendly Catalytic Route for the Preparation of Perfumery Grade Methyl Anthranilate from Anthranilic Acid and Methanol," Organic Process Research & Development, vol. 2, pp. 86-95, 1998. DOI: https://doi.org/10.1021/op970047d

S. M. A. Hosseini and A. Azimi, "The inhibition effect of the new Schiff base, namely 2,2′-[bis-N(4-choloro benzaldimin)]-1,1′-dithio against mild steel corrosion," Materials and Corrosion, vol. 59, pp. 41-45, 2008. DOI: https://doi.org/10.1002/maco.200704101

F. K. Abbas Afkhami*, and Hamid Khanmohammadi, "Spectrophotometric Determination of Complex Formation Constants Between a New Schiff Base and Some Transition Metals by Rank Annihilation Factor Analysis," J. Chem. Eng., vol. 54, pp. 866-870, 2009. DOI: https://doi.org/10.1021/je800663v

R. Yan, P. G. Liu, Z. M. Zhang, X. Y. Fang, X. W. Zhang, J. L. Deng, et al., "Synthesis, biological evaluation and molecular modeling studies of Schiff bases derived from 4-methylsalicylic acid as potential immunosuppressive agents," Medicinal Chemistry Research, vol. 22, pp. 5707-5716, 2013. DOI: https://doi.org/10.1007/s00044-013-0561-0

R. R. L. Beltrán, "Síntesis, caracterización y actividad antibacteriana de complejos metálicos con bases de Schiff que contienen cefradina," Departamento de Química, UNIVERSIDAD DE ORIENTE, Cumaná - Venezuela, 2009.

K. Gangarapu, Development of Isatin as CNS Agents: Anticonvulsant activity. Germany: Anchor Academic Publishing, 2015.

M. Sirajuddin, N. Uddin, S. Ali, and M. N. Tahir, "Potential bioactive Schiff base compounds: Synthesis, characterization, X-ray structures, biological screenings and interaction with Salmon sperm DNA," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 116, pp. 111-121, 2013. DOI: https://doi.org/10.1016/j.saa.2013.06.096

N. A. Illán-Cabeza, F. Hueso-Ureña, M. N. Moreno-Carretero, J. M. Martínez-Martos, and M. J. Ramírez-Expósito, "Synthesis, characterization and antiproliferative activity of metal complexes with the Schiff base derived from the condensation 1:2 of 2,6-diformyl-4-methylphenol and 5,6-diamino-1,3-dimethyluracil," Journal of Inorganic Biochemistry, vol. 102, pp. 647-655, 2008. DOI: https://doi.org/10.1016/j.jinorgbio.2007.10.008

K. C. Gupta and A. K. Sutar, "Catalytic activities of Schiff base transition metal complexes," Coordination

Chemistry Reviews, vol. 252, pp. 1420-1450, 2008. DOI: https://doi.org/10.1016/j.ccr.2007.09.005

M. Lenz, N. Borlinghaus, L. Weinmann, and B. M. Nestl, "Recent advances in imine reductase-catalyzed reactions," World Journal of Microbiology and Biotechnology, vol. 33, 2017. DOI: https://doi.org/10.1007/s11274-017-2365-8

S. Yu, J. Feng, T. Cai, and S. Liu, "Schiff Base Bridged Phenolic Diphenylamines for Highly Efficient and Superior Thermostable Lubricant Antioxidants," Industrial & Engineering Chemistry Research, vol. 56, 2017. DOI: https://doi.org/10.1021/acs.iecr.7b00313

M. D. Rudrapal, Biplab, "Chemistry and Biological Importance of Heterocyclic Schiff's Bases," International Research Journal of Pure and Applied Chemistry, vol. 3, pp. 232-249, Jul-Sep2013 2013. DOI: https://doi.org/10.9734/IRJPAC/2013/3996

A. A. Al-Amiery, "Synthesis and antioxidant, antimicrobial evaluation, DFT studies of novel metal complexes derivate from Schiff base," Res Chem Intermed, vol. 38, pp. 745–759, 2012. DOI: https://doi.org/10.1007/s11164-011-0414-8

A. Kawashima, S. Shu, R. Takeda, A. Kawamura, T. Sato, H. Moriwaki, et al., "Advanced asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base," Amino Acids, vol. 48, pp. 973-986, 2016. DOI: https://doi.org/10.1007/s00726-015-2138-3

B. Bouzerafa, A. Ourari, D. Aggoun, R. Ruiz-Rosas, Y. Ouennoughi, and E. Morallon, "Novel nickel(II) and manganese(III) complexes with bidentate Schiff-base ligand: synthesis, spectral, thermogravimetry, electrochemical and electrocatalytical properties," Research on Chemical Intermediates, vol. 42, pp. 4839-4858, 2016. DOI: https://doi.org/10.1007/s11164-015-2325-6

R. Antony, S. T. D. Manickam, and S. Balakumar, "Cu(II), Co(II) and Ni(II) Complexes Installed on Functionalized Silica Surface for Hydrogen Peroxide Assisted Cyclohexane Oxidation," Journal of Inorganic and Organometallic Polymers and Materials, vol. 27, pp. 418-426, 2017. DOI: https://doi.org/10.1007/s10904-016-0482-8

M. Nikoorazm, A. Ghorbani-Choghamarani, and N. Noori, "Synthesis, characterization, and catalytic application of Cr and Mn Schiff base complexes immobilized on modified nanoporous MCM-41," Research on Chemical Intermediates, vol. 42, pp. 4621-4640, 2016. DOI: https://doi.org/10.1007/s11164-015-2304-y

A. G. Mahmoud, K. T. Mahmudov, M. F. C. Guedes Da Silva, and A. J. L. Pombeiro, "Reaction of sodium 2-(2-(2,4-dioxopentan-3-ylidene)hydrazinyl) benzenesulfonate with ethylenediamine on Cu(ii) and Ni(ii) centres: Efficient Cu(ii) homogeneous catalysts for cyanosilylation of aldehydes," RSC Advances, vol. 6, pp. 54263-54269, 2016. DOI: https://doi.org/10.1039/C6RA12274D

S. Chumillas, M. C. Figueiredo, V. Climent, and J. M. Feliu, "Study of dopamine reactivity on platinum single crystal electrode surfaces," Electrochimica Acta, vol. 109, pp. 577-586, 2013. DOI: https://doi.org/10.1016/j.electacta.2013.07.107

O. Kocyigit, "A novel Schiff base bearing dopamine groups with tripodal structure. Synthesis and its salen/salophen-bridged Fe/Cr(III) capped complexes," Journal of Molecular Structure, vol. 1034, pp. 69-74, 2013. DOI: https://doi.org/10.1016/j.molstruc.2012.09.008

M. H. Amir Adabiardakani, Hadi Kargar, "Cinnamaldehyde Schiff Base Derivatives: A Short Review," World Applied Programming, vol. 2, pp. 472-476, 2012.

S. Shreaz, R. A. Shiekh, V. Raja, W. A. Wani, and J. M. Behbehani, "Impaired ergosterol biosynthesis mediated fungicidal activity of Co(II) complex with ligand derived from cinnamaldehyde," Chemico-Biological Interactions, vol. 247, pp. 64-74, 2016. DOI: https://doi.org/10.1016/j.cbi.2016.01.015

R. Quevedo, C. Díaz-Oviedo, and Y. Quevedo-Acosta, "Role of hydroxyl groups on the aromatic ring in the reactivity and selectivity of the reaction of β -phenylethylamines with non-enolizable aldehydes," Research on Chemical Intermediates, vol. 41, pp. 9835-9843, 2015. DOI: https://doi.org/10.1007/s11164-015-1987-4

S. Chigurupati, M. Selvaraj, V. Mani, J. I. Mohammad, K. K. Selvarajan, S. S. Akhtar, et al., "Synthesis of azomethines derived from cinnamaldehyde and vanillin: in vitro aetylcholinesterase inhibitory, antioxidant and insilico molecular docking studies," Medicinal Chemistry Research, vol. 27, pp. 807-816, 2018. DOI: https://doi.org/10.1007/s00044-017-2104-6

I. Khan, M. Shahid, and D. Kabir ud, "Kinetics of the complex formation of chromium(III) with L-hydroxyproline. Mechanistic difference between hexaaquachromium(III) ion and pentaaquahydroxochromium(III) ions in their complexation," Transition Metal Chemistry, vol. 12, pp. 393-397, 1987. DOI: https://doi.org/10.1007/BF01171644

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, et al., "Gaussian 16 Rev. C.01," ed. Wallingford, CT, 2016.

H. P. Ebrahimi, J. S. Hadi, Z. A. Abdulnabi, and Z. Bolandnazar, "Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes," Spectrochim Acta A Mol Biomol Spectrosc, vol. 117, pp. 485-92, Jan 3 2014. DOI: https://doi.org/10.1016/j.saa.2013.08.044

D. A. Case, H. M. Aktulga, K. Belfon, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, et al., "Amber 2021," ed. San Francisco: University of California, 2021.

Y. Ma, B. Fan, T. Zhou, H. Hao, B. Yang, and H. Sun, "Molecular assembly between weak crosslinking cyclodextrin polymer and Trans-cinnamaldehyde for corrosion inhibition towards mild steel in 3.5% NaCl solution: Experimental and theoretical studies," Polymers, vol. 11, 2019. DOI: https://doi.org/10.3390/polym11040635

M. G. Prakash, R. Mahalakshmy, K. R. Krishnamurthy, and B. Viswanathan, "Selective hydrogenation of cinnamaldehyde on nickel nanoparticles supported on titania: Role of catalyst preparation methods," Catalysis Science and Technology, vol. 5, pp. 3313-3321, 2015. DOI: https://doi.org/10.1039/C4CY01379D

A. B. K. Subhash B. Junne, Sainath B. Zangade, Saheb L. Shinde, Yeshwant B. Vibhute, "Synthesis and antibacterial activity of some new schiff bases and 2-Azetidinones containing iodohyydroxy biphenyl moiety," International Multidisciplinary Research Journal, vol. 2, pp. 44-47, 2012.

A. Lagutschenkov, J. Langer, G. Berden, J. Oomens, and O. Dopfer, "Infrared spectra of protonated neurotransmitters: dopamine," Physical Chemistry Chemical Physics, vol. 13, pp. 2815-2823, 2011. DOI: https://doi.org/10.1039/C0CP02133D

A. L. Nicely, D. J. Miller, and J. M. Lisy, "Charge and Temperature Dependence of Biomolecule Conformations: K+Tryptamine(H2O)n=0−1Arm=0−1 Cluster Ions," Journal of the American Chemical Society, vol. 131, pp. 6314-6315, 2009. DOI: https://doi.org/10.1021/ja8094526

J. Mohan, Organic Spectroscopy: Principles and Applications, Second ed. India: Alpha Science International Ltd., 2004.

O. Jha, T. K. Yadav, and R. A. Yadav, "Structural and vibrational study of a neurotransmitter molecule: Dopamine [4-(2-aminoethyl) benzene-1,2-diol]," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 189, pp. 473-484, 2018. DOI: https://doi.org/10.1016/j.saa.2017.07.067

R. T. Conley, Espectroscopia Infrarroja, Primera Edición ed. Madrid: Editorial lhambra S. A., 1979.

C. Hernandez T and R. G. E. Morales, "Bridge effect in charge-transfer photoconduction channels. 1. Aromatic carbonyl compounds," The Journal of Physical Chemistry, vol. 97, pp. 11649-11651, 1993. DOI: https://doi.org/10.1021/j100147a016

W. O. Foye, Principles of Medicial Chemistry, Lea & Febiger ed. United States of America, 1989.

P. Kovacic, R. S. Pozos, R. Somanathan, N. Shangari, and P. J. O'Brien, "Mechanism of mitochondrial uncouplers, inhibitors, and toxins: Focus on electron transfer, free radicals, and structure-activity relationships," Current Medicinal Chemistry, vol. 12, pp. 2601-2623, 2005. DOI: https://doi.org/10.2174/092986705774370646

Descargas

Publicado

2021-09-07

Cómo citar

Tulcán Mejía, E. M., Galindo Cruz, J. F., & Perez Figueredo, C. R. (2021). Síntesis De Una Base De Schiff A Partir De Dopamina Y Cinamaldehído. Ciencia En Desarrollo, 12(2). https://doi.org/10.19053/01217488.v12.n2.2021.8500

Número

Sección

Artículos de investigación / Research papers

Métrica