Photocatalytic degradation of the 2,4-dichlorophenoxyacetic acid herbicide using supported iridium materials
Abstract
In this work, the effect of the addition of iridium on TiO2 and Nb2O5 supports obtained by wet impregnation method was evaluated in the photocatalytic degradation of 2,4-dichlorophenoxiacetic acid under UV irradiation. The synthetized materials were analyzed by different techniques in order to determinate their physicochemical properties. In general, it was observed that the addition of iridium modifies the surface area, band gap energy and it enhances the crystallinity of the materials. Besides, an increase in the photoactivity in the degradation of the herbicide was evidenced using the materials modified. However, the Ir/TiO2 photocatalyst possess the best photocatalytic behavior toward the degradation and possible mineralization of the herbicide. The improved performance of the photocatalyst could be argued by the role of the iridium particles as electron collectors favoring the effective separation of the charge carriers and, as consequence, increasing the degradation of the molecule.
Keywords
ácido 2,4-diclorofenoxiacético, Fotodegradación, Fotocatálisis, Iridio, Nb2O5, TiO2.
References
[1] J.J Murcia Mesa, J.A. García, H. Rojas, O. Cárdenas, "Photocatalytic degradation of Phenol, Catechol and Hydroquinone over Au-ZnO nanomaterials", Rev. Fac. de Ing., vol. 94, pp. 24-32, Jan-Mar 2020. http://dx.doi.org/10.17533/udea.redin.20190513.
[2] M. Choquette-Labbé, W. Shewa, J. Lalman, S. Shanmugam, "Photocatalytic Degradation of Phenol and Phenol Derivatives Using a Nano-TiO2 Catalyst: Integrating Quantitative and Qualitative Factors Using Response Surface Methodology", Water, vol. 6, pp. 1785-1806, June 2014. https://doi.org/10.3390/w6061785.
[3] L. Zaidan, J. Rodríguez, D. Napoleao, M. Branco da Silva, A. Da Nova, M. Benachour, V. Da Silva, "Heterogeneous photocatalytic degradation of phenol and derivatives by (BiPO4/H2O2/UV and TiO2/H2O2/UV) and the evaluation of plant seed toxicity tests", Korean J. Chem. Eng., vol. 34, pp. 511-522, Dec 2017. doi: 10.1007/s11814-016-0293-1.
[4] H. Anwer, A. Mahmood, J. Lee, K.H. Kim, J.W. Park, A. Yip, "Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges", Nano. Res., vol. 12, pp. 955-972, Jan 2019. doi: 10.1007/s12274-019-2287-0.
[5] L. Karimi, S. Zohoori, M.E. Yazdanshenas, "Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst", J. Saudi. Chem. Soc., vol. 18, pp. 581-588, Nov 2014. https://doi.org/10.1016/j.jscs.2011.11.010.
[6] S. Mancipe, J. Martínez, C. Pinzón, H. Rojas, D. Solis, R. Gómez, "Effective photocatalytic degradation of Rhodamine B using tin semiconductors over hydrotalcite-type materials under sunlight driven", Catal. Today., In Press, Dec 2020. https://doi.org/10.1016/j.cattod.2020.12.014.
[7] M. Abdennouri, M. Baalala, A. Galadi, M. El Makhfouk, M. Bensitel, K. Nohair, M. Sadiq, A. Boussaoud, N. Barka, "Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays", Arab. J. Chem., vol. 9, pp. S313-S318, Sep 2016. https://doi.org/10.1016/j.arabjc.2011.04.005.
[8] J. Senthilnathan, L. Philip, "Photodegradation of methyl parathion and dichlorvos from drinking water with N-doped TiO2 under solar radiation", Chem. Eng. J., vol. 172, pp. 678-688, Aug 2011. https://doi.org/10.1016/j.cej.2011.06.035.
[9] H. Lee, S.H. Park, Y.K. Park, S.J. Kim, S.G. Seo, S.J. Ki, S.C. Jung, "Photocatalytic reactions of 2,4-dichlorophenoxyacetic acid using a microwave-assisted photocatalysis system", Chem. Eng. J., vol. 278, pp. 259-264, Oct 2015. https://doi.org/10.1016/j.cej.2014.09.086.
[10] F.X. Nobre, F.A.F. Mariano, F.E.P. Santos, M.L.M. Rocco, L. Manzato, J.M.E. de Matos, P.C.R. Couceiro, W.R. Brito, "Heterogeneous photocatalysis of Tordon 2,4-D herbicide using the phase mixture of TiO2", J. Environ. Chem. Eng., vol. 7, pp. 103501, Dec 2019. https://doi.org/10.1016/j.jece.2019.103501.
[11] D. Ova, B. Ovez, "2,4-Dichlorophenoxyacetic acid removal from aqueous solutions via adsorption in the presence of biological contamination", J. Environ. Chem. Eng., vol. 1, pp. 813-821, Dec 2013. https://doi.org/10.1016/j.jece.2013.07.024.
[12] R. Kamaraj, D.J. Davidson, G. Sozhan, S. Vasudevan, "Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from water by in situ generated metal hydroxides using sacrificial anodes", J. Taiwan Inst.Chem. Eng., vol. 45, pp. 2943-2949, Nov 2014. https://doi.org/10.1016/j.jtice.2014.08.006.
[13] M.P Serbent, A. Martínez, A. Pinheiro, A. Giongo, L. Ballod, "Biological agents for 2,4-dichlorophenoxyacetic acid herbicide degradation", Appl. Microbiol. Biotechnol., vol. 103, pp. 5065-5078, May 2019. 10.1007/s00253-019-09838-4.
[14] X. Lü, Q. Zhang, W. Yang, X. Li, L. Zeng, L, Li, "Catalytic ozonation of 2,4-dichlorophenoxyacetic acid over novel Fe–Ni/AC", RSC Adv., vol. 5, pp. 10537-10545, Jan 2015. DOI: 10.1039/C4RA11610K.
[15] F.M de Souza, O.A.A. dos Santos, M.G.A. Vieira, "Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay", Environ. Sci. Pollut. Res., vol. 26, pp. 18329-18342, Apr 2019. 10.1007/s11356-019-05196-w.
[16] A. Estrella, M. Asomoza, S. Solís, M.A. García, S. Cipagauta."Enhanced photocatalytic degradation of the herbicide 2,4-dichlorophenoxyacetic acid by Pt/TiO2–SiO2 nanocomposites", Reac. Kinet. Mech. Catal., vol. 131, pp. 489-503, Sep 2020. 10.1007/s11144-020-01865-x.
[17] S. Neatu, J. Maciá-Agulló, H. Garcia, "Solar Light Photocatalytic CO2 Reduction: General Considerations and Selected Bench-Mark Photocatalysts", Int. J. Mol. Sci., vol. 15, pp. 5246-5262. Mar 2014. doi: 10.3390/ijms15045246.
[18] D. Chen, Y. Chen, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Chen, P. Peng, R. Zhang, L. Wang, H. Liu, R. Ruan, "Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review", J. Clean. Prod., vol. 268, pp. 121725, Sep 2020. https://doi.org/10.1016/j.jclepro.2020.121725.
[19] S. Murgolo, S. Franz, H. Arab, M. Bestetti, E. Falletta, G. Mascolo, "Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes", Water Res., vol. 164, pp. 114920, Nov 2019. https://doi.org/10.1016/j.watres.2019.114920.
[20] S.W. Verbruggen, "TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement", J. Photochem. Photobiol. C: Photochem. vol. 24, pp. 64-82, Sep 2015. https://doi.org/10.1016/j.jphotochemrev.2015.07.001.
[21] H. Yu, X. Wang, H. Sun, M. Huo, "Photocatalytic degradation of malathion in aqueous solution using an Au–Pd–TiO2 nanotube film", J. Hazard. Mater., vol. 184, pp, 753-758, Dec 2010. https://doi.org/10.1016/j.jhazmat.2010.08.103.
[22] S. Maddila, S. Rana, R. Pagadala, S.N. Maddila, C. Vasam, S.B. Jonnalagadda, "Ozone-driven photocatalyzed degradation and mineralization of pesticide, Triclopyr by Au/TiO2", J. Environ. Sci. Health B., vol. 50, pp. 571-583, 2015. doi: 10.1080/03601234.2015.1028835.
[23] Y.H. Pai, S.Y. Fang, "Preparation and characterization of porous Nb2O5 photocatalysts with CuO, NiO and Pt cocatalyst for hydrogen production by light-induced water splitting", J. Power. Sources., vol. 230, pp. 321-326, May 2013. https://doi.org/10.1016/j.jpowsour.2012.12.078.
[24] B. Boruah, R. Gupta, J.M. Modak, G. Madras, "Enhanced photocatalysis and bacterial inhibition in Nb2O5 via versatile doping with metals (Sr, Y, Zr, and Ag): a critical assessment", Nanoscale Adv., vol. 1, pp. 2748-2760, May 2019. doi:10.1039/C9NA00305C.
[25] H. Zhang, Q. Lin, S. Ning, Y. Zhou, H. Lin, J. Long, Z. Zhang, X. Wang, "One-step synthesis of mesoporous Pt–Nb2O5 nanocomposites with enhanced photocatalytic hydrogen production activity", RSC Adv., vol. 6, pp. 96809-96815, Oct 2016. doi: 10.1039/C6RA19118E.
[26] M.K. Silva, R.G. Marques, N.R.C.F. Machado, O.A.A. Santos, "Evaluation of Nb2O5 and Ag/Nb2O5 in the photocatalytic degradation of dyes from textile industries", Braz. J. Chem. Eng., vol. 19, pp. 359-363, Dec 2002. https://doi.org/10.1590/S0104-66322002000400001.
[27] X. Cheng, X. Yu, Z. Xing, J. Wan, "Enhanced Photocatalytic Activity of Nitrogen Doped TiO2 Anatase Nano-Particle under Simulated Sunlight Irradiation", Energy Procedia, vol. 16, pp. 598-605, 2012. https://doi.org/10.1016/j.egypro.2012.01.096.
[28] L.A. Morais, C. Adán, A.S. Araujo, A. Guedes, J. Marugán, "Synthesis, Characterization, and Photonic Efficiency of Novel Photocatalytic Niobium Oxide Materials", Glob. Chall., vol. 1, pp. 1700066, Dec 2017. https://doi.org/10.1002/gch2.201700066.
[29] R. Liu, T. Liu, Y. Qiao, Y. Bie, Y. Song, "Photodegradation of methylene blue over a new down-shifting luminescence catalyst", Bull. Mater. Sci., vol. 42, pp. 239, Jul 2019. https://doi.org/10.1007/s12034-019-1920-3.
[30] J.J. Murcia, J.S. Hernández, H.Rojas, J. Moreno-Cascante, P. Sáncehz-Cid, M.C. Hidalgo, J.A. Navío, C. Jaramillo-Páez, "Evaluation of Au–ZnO, ZnO/Ag2CO3 and Ag–TiO2 as Photocatalyst for Wastewater Treatment", Top. Catal., vol. 63, pp. 1286-1301, Feb 2020. https://doi.org/10.1007/s11244-020-01232-z.
[31] C. Castañeda, I. Alvarado, J. Martínez, M.H. Brijaldo, F. Passos, H. Rojas, "Enhanced photocatalytic reduction of 4-nitrophenol over Ir/CeO2 photocatalysts under UV irradiation", J. Chem. Technol. Biotechnol., vol 94, pp. 2630-2639, May 2019. https://doi.org/10.1002/jctb.6072.
[32] C. Tiozzo, C. Bisio, F. Carniato, L. Marchese, A. Gallo, N. Ravasio, R. Psaro, M. Guidotti, "Epoxidation with hydrogen peroxide of unsaturated fatty acid methyl esters over Nb(V)-silica catalysts", Eur. J. Lipid Sci. Technol., vol. 115, pp. 86-93, Sep 2013. https://doi.org/10.1002/ejlt.201200217.
[33] C. Tiozzo, C. Bisio, F. Carniato, A. Gallo, S.L. Scott, R. Psaro, M. Guidotti, "Niobium–silica catalysts for the selective epoxidation of cyclic alkenes: the generation of the active site by grafting niobocene dichloride", Phys. Chem. Chem. Phys., vol. 15, pp. 13354-13362, Aug 2013. doi: 10.1039/c3cp51570b.
[34] S. Chen, W. Zhao, W. Liu, S. Zhang, "Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO2", Appl. Sur. Sci., vol. 255, pp. 2478-2484, Dec 2008. https://doi.org/10.1016/j.apsusc.2008.07.115.
[35] L.M. Ahmed, I. Ivanova, F.H. Husein, D.W. Bahnemann, "Role of Platinum Deposited on TiO2 in Photocatalytic Methanol Oxidation and Dehydrogenation Reactions", Int. J. Photoenergy, vol. 2014, pp. 1-9, Feb 2014. https://doi.org/10.1155/2014/503516.
[36] K. M. Rahulan, S. Ganesan, P. Aruna, "Synthesis and optical limiting studies of Au-doped TiO2 nanoparticles", Adv. Nat. Sci.: Nanosci. Nanotechnol., vol. 2, pp. 1-7, May 2011. doi:10.1088/2043-6262/2/2/025012.
[37] N. Rani, R. Ahlawat, "Structural and optical properties of Nb2O5/SiO2 powder prepared by sol-gel method", AIP. Conf. Proc., vol. 2265, pp. 1-5, Nov 2020. https://doi.org/10.1063/5.0017030.
[38] C. Daza, J. Rodríguez, "The effect of the synthesis conditions on structure and photocatalytic activity of Nb2O5 nanostructures", Process. Appl. Ceram., vol. 12, pp. 218-229, Aug 2018. https://doi.org/10.2298/PAC1803218G.
[39] G. Ma, K. Li, Y. Li, B. Gao, T. Ding, Q. Zhong, J. Su, L. Gong, J. Chen, L. Yuan, B. Hu, J. Zhou, K. Huo, "High-Performance Hybrid Supercapacitor Based on Graphene-Wrapped Mesoporous T-Nb2O5 Nanospheres Anode and Mesoporous Carbon-Coated Graphene Cathode", Chem. Electro. Chem., vol. 3, pp. 1360-1368, Jun 2016. https://doi.org/10.1002/celc.201600181.
[40] L.R. V.da Conceição, L.M. Carneiro, J.D. Rivaldi, H.F. de Castro, "Solid acid as catalyst for biodiesel production via simultaneous esterification and transesterification of macaw palm oil", Ind. Crops. Prod., vol. 89, pp. 416-424, Oct 2016. https://doi.org/10.1016/j.indcrop.2016.05.044.
[41] M. Hamadanian, A. Reisi-Vanani, A. Majedi, "Sol-gel preparation and characterization of Co/TiO2 nanoparticles: Application to the degradation of methyl orange", J. Iranian Chem. Soc., vol. 7, pp. S52-S58, Jul 2010. https://doi.org/10.1007/BF03246184.
[42] M. Crocker, U.M. Graham, R. Gonzalez, G. Jacobs, E. Morris, A.M. Rubel, R. Andrews, "Preparation and characterization of cerium oxide templated from activated carbon", J. Mat. Sci., vol. 42, pp. 3454-3464, Jan 2007. https://doi.org/10.1007/s10853-006-0829-6.