Skip to main navigation menu Skip to main content Skip to site footer

Effect of travel speed in arc welding processes using the finite element method

Abstract

Welding is a process for joining elements commonly found at an industrial level where one of the most widely used types is the electric arc. For its correct application, variables such as type of electrode, amperage, voltage, travel speed, polarity, type of joint, among others, must be taken into account. In this work, the effect of travel speed was evaluated, which directly affects the mode of metal transfer and the morphology of the weld bead, therefore, it must be correctly defined in order to satisfactorily achieve the union of the materials. To determine its effect, the thermal profile was calculated on a plate using a finite element software. The speed values used were taken from specifications recommended by industrial suppliers of welding consumables. Furthermore, the simulation was performed for a butt joint, where it was assumed that the energy applied to the metal was uniform and constant over a circular area.

Keywords

Welding, Electric arc, Simulation, Finite element method, Travel speed

PDF (Español)

References

  1. A. Faye, Y. Balcaen, L. Lacroix, and J. Ale- xis, “Effects of welding parameters on the microstructure and mechanical properties of the AA6061 aluminium alloy joined by a Yb: YAG laser beam,” Journal of Advanced Joining Processes, vol. 3, no. November 2020, p. 100047, jun 2021. [Online]. Avai- lable: https://linkinghub.elsevier.com/retrieve/ pii/S2666330921000078 DOI: https://doi.org/10.1016/j.jajp.2021.100047
  2. Z. zhen Xu, Z. qiang Dong, Z. hui Yu, W. ke Wang, and J. xun Zhang, “Relationships between microhardness, microstructure, and grain orientation in laser-welded joints with different welding speeds for Ti6Al4V titanium alloy,” Transactions of Nonferrous Metals So- ciety of China (English Edition), vol. 30, no. 5, pp. 1277–1289, 2020. [Online]. Available: http: //dx.doi.org/10.1016/S1003-6326(20)65295-5 DOI: https://doi.org/10.1016/S1003-6326(20)65295-5
  3. T. Abioye, O. Ariwoola, T. Ogedengbe, P. Farayibi, and O. Gbadeyan, “Effects of Welding Speed on the Microstructure and Corrosion Behavior of Dissimilar Gas Metal Arc Weld Joints of AISI 304 Stainless Steel and Low Carbon Steel,” Materials Today: Proceedings, vol. 17, pp. 871–877, 2019. DOI: https://doi.org/10.1016/j.matpr.2019.06.383
  4. C. M. Franco-Rendón, H. León-Henao, Á. D. Bedoya-Zapata, J. F. Santa, and J. E. Giraldo B., “Failure analysis of fillet welds with pre- mature corrosion in 316L stainless steel slide gates using constitution diagrams,” Revista UIS Ingenierías, vol. 19, no. 2, pp. 141–148, 2020. DOI: https://doi.org/10.18273/revuin.v19n2-2020016
  5. S. Kumar Gupta, S. Mehrotra, A. Ravi Raja, M.Vashista, and M. Khan Yusufzai, “Effect Of Welding Speed On Weld Bead Geometry And Percentage Dilution In Gas Metal Arc Welding Of SS409L,” Materials Today: Proceedings, vol. 18, pp. 5032–5039, 2019. [Online]. Available: https://doi.org/10.1016/j. matpr.2019.07.497https://linkinghub.elsevier. com/retrieve/pii/S2214785319326835 DOI: https://doi.org/10.1016/j.matpr.2019.07.497
  6. O. M. Castellanos, A. M. Moreno-uribe, S. A. Ramón-ramón, J. L. Jácome, U. Federal, D. M. Gerais, and B. Correos, “Evaluación de la trans- ferencia metálica y estabilidad del proceso GMAW Evaluation of the metal transfer and stability of GMAW process,” Revista UIS Inge- nierías, vol. 20, no. 3, pp. 47–60, 2021. DOI: https://doi.org/10.18273/revuin.v20n3-2021003
  7. R. Fernandes-Lara, A. M. Moreno-Uribe, and A. Q. Bracarense, “Development of a hatch system for the determination of diffusible hydrogen in underwater welding,” Respuestas, vol. 25, no. 1, pp. 168–177, jan 2020. [Online]. Available: https://revistas.ufps.edu. co/index.php/respuestas/article/view/2433 DOI: https://doi.org/10.22463/0122820X.2433
  8. H. Hekmatjou, Z. Zeng, J. Shen, J. P. Oliveira, and H. Naffakh-Moosavy, “A Comparative Study of Analytical Rosenthal, Finite Ele- ment, and Experimental Approaches in Laser Welding of AA5456 Alloy,” Metals, vol. 10, no. 4, p. 436, mar 2020. [Online]. Available: https://www.mdpi.com/2075-4701/10/4/436 DOI: https://doi.org/10.3390/met10040436
  9. S. Kou, Transport Phenomena and Materials Processing, 1996.
  10. P. Promoppatum, S.-C. Yao, P. C. Pistorius, and A. D. Rollett, “A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion,” Engineering, vol. 3, no. 5, pp. 685–694, oct 2017. [Online]. Available: http://dx.doi.org/10.1016/J.ENG. 2017.05.023https://linkinghub.elsevier.com/ retrieve/pii/S2095809917307208 DOI: https://doi.org/10.1016/J.ENG.2017.05.023
  11. M. Sundar, A. K. Nath, D. K. Bandyopadhyay, S. P. Chaudhuri, P. K. Dey, and D. Misra, “Nu- merical simulation of melting and solidification in laser welding of mild steel,” International Journal of Computational Materials Science and Surface Engineering, vol. 1, no. 6, pp. 717– 733, 2007. DOI: https://doi.org/10.1504/IJCMSSE.2007.017926
  12. A. Anca, A. Cardona, J. Risso, and V. D. Fa- chinotti, “Finite element modeling of welding processes,” Applied Mathematical Modelling, vol. 35, no. 2, pp. 688–707, feb 2011. [Online]. Available: https://linkinghub.elsevier.com/ retrieve/pii/S0307904X10002751 DOI: https://doi.org/10.1016/j.apm.2010.07.026
  13. G. A. Taylor, M. Hughes, N. Strusevich, and K. Pericleous, “Finite volume methods applied to the computational modelling of welding phenomena,” Applied Mathematical Modelling, vol. 26, no. 2, pp. 311–322, feb 2002. [Online]. Available: https://linkinghub.elsevier. com/retrieve/pii/S0307904X01000634 DOI: https://doi.org/10.1016/S0307-904X(01)00063-4
  14. E. Ranjbarnodeh, S. Serajzadeh, A. H. Koka- bi, and A. Fischer, “Prediction of temperature distribution in dissimilar arc welding of stain- less steel to carbon steel,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 226, no. 1, pp. 117–125, 2012. DOI: https://doi.org/10.1177/0954405411403551
  15. M. Farajpour and E. Ranjbarnodeh, “Finite ele- ment simulation of welding distortion in dis- similar joint by inherent deformation method,”Soldagem e Inspecao, vol. 23, no. 1, pp. 60–72, 2018. DOI: https://doi.org/10.1590/0104-9224/si2301.07
  16. M. S. S. Rathod, S. P. Gaikwad, and N. S. Ka- tikar, “Finite Element Model for the Effect of Heat Input and Speed on Residual Stress during Welding,” International Journal of Application or Innovation in Engineering and Management (IJAIEM), vol. 2, no. 8, pp. 236–241, 2013.
  17. M.MorakabiyanEsfahani,A.Farzadi,andS.R. Alavi Zaree, “Effect of Welding Speed on Gas Metal Arc Weld Pool in Commercially Pu- re Aluminum: Theoretically and Experimen- tally,” Russian Journal of Non-Ferrous Metals, vol. 59, no. 1, pp. 82–92, 2018. DOI: https://doi.org/10.3103/S1067821218010121
  18. M. Bin, “Thermal simulation of different wel- ding speed and metal thickness for butt-joint welding with Ansys,” Ph.D. dissertation, Uni- versiti Teknologi Petronas, 2015.
  19. J. Winczek, M. Gucwa, and K. Makles, “Analysis of thermal cycles and phase transfor- mations during multi-pass arc weld surfacing of steel casts taking into account heat of the weld,” Journal of Applied Mathema- tics and Computational Mechanics, vol. 17, no. 1, pp. 89–100, mar 2018. DOI: https://doi.org/10.17512/jamcm.2018.1.09
  20. S. Nadimi, R. Khoushehme, B. Rohani, and A. Mostafapou, “Investigation and Analysis of Weld Induced Residual Stresses in Two Dissimilar Pipes by Finite Element Modeling,” Journal of Applied Sciences, vol. 8, no. 6, pp. 1014–1020, mar 2008. [Online]. Availa- ble: https://www.scialert.net/abstract/?doi=jas. 2008.1014.1020 DOI: https://doi.org/10.3923/jas.2008.1014.1020

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.