Skip to main navigation menu Skip to main content Skip to site footer

Production Of Lactuca Sativa L. And Ocimum Basilicum L. In Aquapony: Characterization Of Essential Oils

Abstract

Aquaponics is a strategy that allows water savings, nutrient efficiency and clean food production. However, its implementation is still a challenge in developing countries due to the problems associated with low nutrient recovery efficiency, cost and water quality; that affect the production and quality of food. Thus, this work aimed to establish the production of Lactuca Sativa L. and Ocimum Basilicum L. in a semi-commercial aquaponic Oreochromis niloticus prototype and the characterization of the essential oil of Ocimum Basilicum L. System water quality parameters, growth of the plant species and composition of the essential oil extracted by distillation using clevenger-type equipment. The results showed adequate concentrations of phosphate and nitrate for plant growth and low levels of K+, Ca2+ and Fe2+. The lettuces reached an average weight of 110-155 g after 40 days of cultivation, while the basil generated a fresh weight of 20.5±8.7 to 40.7±5.5 g after 60 days of cultivation. On the other hand, it was observed that linalool and chavicol were the main components of basil essential oil and this was related to the content of nutrients present in the system.

Keywords

Waste management, chavicol, nutrient cycling, linalool, water quality


References

  1. E. R. Riaño-Castillo et al., “Cambios en los niveles de nutrientes en solución hidropónica de espinaca baby (Spinacia oleracea L.), para su futura aplicación en acuapónia,” Orinoquia, vol. 23, no. 1, pp. 73–84, Jun. 2019, doi: 10.22579/20112629.544.
  2. A. Torres-Mesa, L. Cifuentes-Torres, H. Hurtado-Giraldo, and E. Gómez-Ramírez, “Evaluation of plant-fish ratio in an aquaponic system with different stocking densities of Cyprinus carpio and Carassius auratus,” AACL Bioflux, vol. 16, no. 1, pp. 606–615, 2023.
  3. D. Cardenas Laverde, A. C. Torres Mesa, and E. Gómez Ramírez, “Identificación de aceites esenciales y parámetros productivos de Mentha spicata cultivada en sistemas acuapónicos y camas contenidas,” Rev. Investig. Agrar. y Ambient., vol. 13, no. 2, pp. 149–163, 2022, doi: 10.22490/21456453.4704.
  4. J. E. Rakocy, “Aquaponics: Integrating fish and plant culture,” in Recirculating Aquaculture System, 2nd ed., M. B. Timmons and J. M. Ebeling, Eds. Ithaca: Cayuga Aqua Ventures, 2010, pp. 807–864.
  5. A. Graber and R. Junge, “Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production,” Desalination, 2009, doi: 10.1016/j.desal.2008.03.048.
  6. G. Rafiee and C. R. Saad, “Nutrient cycle and sludge production during different stages of red tilapia (Oreochromis sp.) growth in a recirculating aquaculture system,” Aquaculture, 2005, doi: 10.1016/j.aquaculture.2004.10.029.
  7. B. da S. Cerozi and K. Fitzsimmons, “Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems,” Sci. Hortic. (Amsterdam)., vol. 211, pp. 277–282, Nov. 2016, doi: 10.1016/j.scienta.2016.09.005.
  8. J. Valverde, “Establecimiento de curvas de absorción para lechuga bajo el sistema hidropónico de NFT,” Universidad de Costa Rica, 2013.
  9. E. Combatt, D. Pérez Polo, J. Villalba Arteaga, J. Lazaro, and A. Jarma-Orozco, “Macronutrientes en el tejido foliar de albahaca Ocimum basilicum L. en respuesta a la aplicación de nitrógeno y potasio,” vol. 23, Jul. 2020, doi: 10.31910/rudca.v23.n2.2020.1325.
  10. L. M. Ramírez Sánchez, M. M. Pérez Trujillo, P. Jiménez, H. Hurtado Giraldo, and E. Gómez Ramírez, “Acuapónicos e hidropónicos en cama flotante para el cultivo de orégano,” Rev. Fac. Ciencias, vol. 7, no. 2, pp. 242–259, 2011.
  11. J. P. Aguirre-Galindo, A. C. Torres-Mesa, M. M. Pérez-Trujillo, S. A. Rubio-Castro, and E. Gómez-Ramírez, “Evaluation of Fragaria x ananassa in an aquaponic system with Oncorhynchus mykiss and substrate culture conditions,” AACL Bioflux, vol. 16, no. 5, pp. 2589–2600, 2023, [Online]. Available: http://bioflux.com.ro/docs/2023.2589-2600.pdf.
  12. L. Pandales and H. Santos, “Evaluación del desempeño de un sistema acuapónico con tres variedades de albahaca bajo condiciones de invernadero como una alternativa de producción limpia,” Universidad Militar Nueva Granada, 2017.
  13. P. Chen et al., “Maximizing nutrient recovery from aquaponics wastewater with autotrophic or heterotrophic management strategies,” Bioresour. Technol. Reports, vol. 21, p. 101360, 2023, doi: https://doi.org/10.1016/j.biteb.2023.101360.
  14. R. L. Nelson and J. S. Pade, Aquaponic Food Production: Growing Fish and Vegetables for Food and Profit. Nelson and Pade, Incorporated, 2008.
  15. Z. M. Nadia, A. R. Akhi, P. Roy, F. B. Farhad, M. M. Hossain, and M. A. Salam, “Yielding of aquaponics using probiotics to grow tomatoes with tilapia,” Aquac. Reports, vol. 33, p. 101799, 2023, doi: https://doi.org/10.1016/j.aqrep.2023.101799.
  16. E. R. Riaño-Castillo, E. Gómez-Ramírez, A. Torres-Mesa, and L. P. Villamil Moreno, Producción de peces y hortalizas en un sistema acuapònico , bajo un modelo familiar, Primera. Tunja, Boyacá: Buhos Editores Ltda, 2023.
  17. E. R. Riaño-Castillo, “Efecto del Nivel de Proteína Cruda en la Dieta Sobre el Crecimiento y Excreción de Nitrógeno Amoniacal Total de Carassius auratus (Cyprinidae) Linnaeus (1758) Bajo Condiciones de Laboratorio,” Rev. la Fac. Ciencias, vol. 11, no. 1, pp. 34–47, 2015, doi: 10.18359/rfcb.380.
  18. C. Carranza, O. Lanchero, D. Miranda, and B. Chaves, “Análisis del crecimiento de lechuga (Lactuca sativa L.) ‘Batavia’ cultivada en un suelo salino de la Sabana de Bogotá,” Agron. Colomb., vol. 27, no. 1, pp. 41–48, Aug. 2009, [Online]. Available: https://www.redalyc.org/articulo.oa?id=180314730006.
  19. E. W. Moreno Simón and A. Z. Trelles, “Sistema acuapónico del crecimiento de lechuga, Lactuca sativa, con efluentes de cultivo de tilapia,” Rev. Investig. Científica REBIOL, ISSN-e 2313-3171, Vol. 34, No. 2, 2014 (Ejemplar Dedic. a Rev. Investig. CIENTÍFICA(REBIOL)), págs. 60-72, vol. 34, no. 2, pp. 60–72, 2014, Accessed: Aug. 24, 2023. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=8143148&info=resumen&idioma=SPA.
  20. D. Ramírez, D. Sabogal, E. Gómez, D. Rodríguez, and H. Hurtado, “Montaje y evaluación preliminar de un sistema acuapónico Goldfish- lechuga,” Rev. la Fac. Ciencias, vol. 5, no. 1, pp. 154–170, 2009.
  21. R. Pertierra and J. Gonzabay, “Análisis económico de lechugas hidropónicas bajo sistema raíz flotante en clima semiárido,” La Granja, vol. 31, pp. 118–130, Feb. 2020, doi: 10.17163/lgr.n31.2020.09.
  22. L. A. Guerrero-Lagunes, L. del Mar Ruíz-Posadas, M. de las Nieves Rodríguez-Mendoza, and M. Soto-Hernández, “Quality and Yield of basil (Ocimum basilicum L.) essential oil under hydroponic cultivation,” Agro Product., vol. 13, no. 9, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:229037426.
  23. R. Ferrarezi and D. Bailey, “Basil Performance Evaluation in Aquaponics,” Horttechnology, vol. 29, pp. 1–9, Feb. 2019, doi: 10.21273/HORTTECH03797-17.
  24. T. Baytop, “Tratamiento con plantas en Turquía.” Universidad de Estambul, 1984.
  25. A. Rashidian, P. Roohi, S. Mehrzadi, A. Ghannadi, and M. Minaiyan, “Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats,” J. Evid. Based. Complementary Altern. Med., vol. 21, Nov. 2015, doi: 10.1177/2156587215616550.
  26. E. Da Silva, L. Faroni, F. Heleno, A. Rodrigues, L. Figueiredo, and M. Lopes, “Optimal Extraction of Ocimum basilicum Essential Oil by Association of Ultrasound and Hydrodistillation and Its Potential as a Biopesticide Against a Major Stored Grains Pest,” Molecules, vol. 25, Jun. 2020, doi: 10.3390/molecules25122781.
  27. O. Toncer, E. Diraz, and S. Tansi, “Essential oil composition of Ocimum basilicum L. at different phenological stages in semi-arid environmental conditions,” Fresenius Environ. Bull., vol. 26, pp. 5441–5446, Jan. 2017.
  28. H. R. Nadeem et al., “Antioxidant Effect of Ocimum basilicum Essential Oil and Its Effect on Cooking Qualities of Supplemented Chicken Nuggets,” Antioxidants, vol. 11, no. 10. 2022, doi: 10.3390/antiox11101882.
  29. A. O. Tursun, “Impact of soil types on chemical composition of essential oil of purple basil,” Saudi J. Biol. Sci., vol. 29, no. 7, p. 103314, 2022, doi: https://doi.org/10.1016/j.sjbs.2022.103314.
  30. J. Bufalo, C. L. Cantrell, T. Astatkie, V. D. Zheljazkov, A. Gawde, and C. S. F. Boaro, “Organic versus conventional fertilization effects on sweet basil (Ocimum basilicum L.) growth in a greenhouse system,” Ind. Crops Prod., vol. 74, pp. 249–254, 2015, doi: https://doi.org/10.1016/j.indcrop.2015.04.032.
  31. B. M. Lawrence, B. D. Mookherjee, and B. J. Willis, Flavors and fragrances : a world perspective : proceedings of the 10th International Congress of Essential Oils, Fragrances, and Flavors, Washington, DC, U.S.A., 16-20 November 1986. Amsterdam SE -: Elsevier Amsterdam, 1988.
  32. T. Koutsos, P. Chatzopoulou, and S. Katsiotis, “Effects of individual selection on agronomical and morphological traits and essential oil of a ‘Greek basil’ population,” Euphytica, vol. 170, pp. 365–370, Dec. 2009, doi: 10.1007/s10681-009-0012-7.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.