Skip to main navigation menu Skip to main content Skip to site footer

A comparison test of equality of two competing risks

Abstract

In this paper, it is tackled the problematic of the risks that are competing to cause the failure from the subject; in particular whether the risks or likelihood of failure associated with each type of failure are equally important or whether a risk is more serious than the other. For this purpose will be made a study of hypothesis tests for equality of cumulative incidence functions of associated with risks. A comparative study of some of the test procedures that have been proposed for this purpose, and thus able to determine the behavior of the different tests in various scenarios to evaluate the performance of the same will be made. Test procedures are included using real data of patients with lymphoma.

Keywords

Cumulative incidence function, cause-specific hazard rates, quantile, bootstrap, random symme- trization approximation, resampling and generalized supremum.

PDF (Español)

References

  1. J. D Kalbfleisch, R. L. Prentice, The Statistical
  2. Analysis of Failure Time Data. New York, John Wiley & Sons Ltd, 1980.
  3. M. Pintilie, Competing risks: A practical perspective. Canadá, John Wiley & Sons Ltd, 2006. DOI: https://doi.org/10.1002/9780470870709
  4. P. M. Petersen, M. Gospodarowicz, R. Tsang, M. Pintilie,W. Wells, D. Hodgson, A. Sun,M. Crump, B. Patterson, y D. Bailey, “Long-term outcome in stage I and II follicular lymphoma following treatment with involved field radiation therapy alone”, Journal of Clinical Oncology, vol. 22, pp. 563S, 2004. DOI: https://doi.org/10.1200/jco.2004.22.90140.6521
  5. A. Aly, S. C. Kochar, y I. W. McKeague, “Some tests for comparing cumulative incidence functions and cause- specific hazard rates”,
  6. Journal of the American Statistical Association, Vol. 89, pp. 994-999, 1994. DOI: https://doi.org/10.1080/01621459.1994.10476833
  7. S. C. Kochar, K. F. Law y P. Yip, “Generalized Supremum Tests for the Equality of Cause Specific Hazard Rates”, Lifetime Data Analysis,
  8. Vol.8, pp. 277-288, 2002. DOI: https://doi.org/10.1001/jama.288.3.277
  9. C. Y. Kam, Z. Lixing y Z. Dixin, “Comparing k Cumulative Incidence Functions Through Resampling Methods”, Lifetime Data Analysis,
  10. Vol. 8, pp. 401-412, 2002. DOI: https://doi.org/10.1023/A:1020575022980
  11. H. Block y A. Basu, “A Continuous bivariate exponential extension”, Journal of the American Statistical Association, Vol. 69, pp.1031- DOI: https://doi.org/10.2307/2286184
  12. , 1974.
  13. T. R. Fleming y D. P. Harrington, Counting Processes and Survival Analysis. New York, John Wiley & Sons Ltd, 1991.
  14. W. Feller, “The asymptotic distribution of the range of sums of independent random variables”, Annals of Mathematical Statistics, Vol.
  15. , pp. 427-432, 1951.
  16. M. D. Burke y K. C. Yuen, “Goodness-of-fit tests for the Cox model via bootstrap method”, Journal of Statistical Planning Inference, Vol.
  17. , pp. 237-256, 1995. DOI: https://doi.org/10.1016/0370-1573(94)00088-K
  18. K. C. Yuen, M. D. Burke, “A test of fit for a semiparametric additive risk model”, Biometrika, Vol. 84, pp. 631-639, 1997. DOI: https://doi.org/10.1093/biomet/84.3.631
  19. D. Pollard, Convergence of Stochastic Processes. New York, Springer-Verlag, 1984. DOI: https://doi.org/10.1007/978-1-4612-5254-2
  20. R. Leandro, y J. Achcar, “Generation of bivariate lifetime data assuming the Block & Basu exponential distribution”, Revista de matemática e estatística, Sao Paulo, Vol. 14, pp. 43-52, 1996.
  21. D, S. Friday y G. P. Patil, “A Bivariate Exponential Model With Applications to Reliability and Computer Generation of Random Variables”, The Theory and Applications of Reliability With Emphasis on Bayesian and Nonparametric Methods Vol.1, pp. 527-549, 1977. eds. DOI: https://doi.org/10.1016/B978-0-12-702101-0.50035-4
  22. C. P. Tsokos and I. N. Shimi, New York: Academic Pres.
  23. Y. Sun y R. C. Tiwari,“Comparing Cause- Specific Hazard Rates of a Competing Risks Model with Censored Data”, Institute of Mathematical
  24. Statistics, Vol. 27, pp. 225-270, 1995. DOI: https://doi.org/10.1126/science.270.5234.225
  25. N. Davarzani, J. A. Achcar, y R. Peeters,“ Bivariate lifetime geometric distribution in presence of cure fractions”, Journal of Data Science, Vol. 13, pp. 755-770, 2015. DOI: https://doi.org/10.6339/JDS.201510_13(4).0007

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.