Split fertilization as a strategy to reduce the amount of fertilizer applied in potato crops form Colombia. Case of study

Fertilización fraccionada como estrategia para reducir la cantidad de fertilizante aplicado en cultivos de papa en Colombia. Estudio de caso

Main Article Content

Oscar Iván Monsalve
Eduardo María Espitia
Martha Marina Bolaños-Benavides

Abstract

In potato crops in Colombia, fertilization has low efficiency in terms of absorption of nutrients by the plant due to fixing, leaching or volatilization processes. To counter this phenomenon, we evaluated the effect of the split application of fertilizers on potato plants and soil. Five treatments were evaluated: Control - fertilization used by farmers locally; As - fertilization recommended by the lab; AsSplit - monthly split of lab recommendation; AsSplit25 - monthly split of lab recommendation, reduced globally by 25%; AsSplit50 - monthly split of the lab recommendation, reduced globally by 50%. AsSplit treatment generated the highest yield (34.13 t ha-1), while treatments that reduced the amount of fertilizer by 25% and 50% obtained the lowest yield (30.94 and 29.57 t ha-1, respectively). However, they generated the lowest amount of NO3- in the leachate measurements at 30 and 90 cm deep. Our results suggest that designing the fertilization formula and applying it according to the requirements of the potato plant and soil fertility generates a positive effect on yield crop and environmental.

Keywords:

Downloads

Download data is not yet available.

Article Details

References (SEE)

Alva, A.K. 2010. Enhancing sustainable nutrient and irrigation management for potatoes. J. Crop Improv. 24, 281-297. https://doi:10.1080/15427528.2010.487742

Añez, B., and W. Espinoza. 2006. Respuesta de la papa a la aplicación fraccionada de nitrógeno y potasio. Agricultura Andina, 11, 28-38.

Battilani, A., F. Plauborg, S. Hansen, F. Dolezal, W. Mazurczyk, J. Bizik, and J. Coutinho. 2008. Nitrogen uptake and nitrogen use efficiency of fertigated potatoes. Acta Hortic. 792, 4. Doi: https://doi.org/10.17660/ActaHortic.2008.792.4

Bohman, B.J., C.J. Rosen, and D.J. Mulla. 2020. Evaluation of variable rate nitrogen and reduced irrigation management for potato production. Agron. J. 111, 2005-2017. Doi: https://doi.org/10.2134/agronj2018.09.0566

Burton, D.L., B.J. Zebarth, K.M. Gillam, and J.A. MacLeod. 2008. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Can. J. Soil Sci. 88, 229-239. Doi: https://doi.org/10.4141/CJSS06007

Ekelöf, J. 2007. Potato yield and tuber set as affected by phosphorus fertilization. SLU, Horticulture, Alnarp. Alnarp: SLU, Horticulture. Retrieved from: https://stud.epsilon.slu.se/12491/1/ekelof_j_171027.pdf

Fedepapa, Colombian federation of potato producers; Minambiente, Ministry of Environment and Territorial Development. 2004. Environmental guide for the potato crop. In: https://repository.agrosavia.co/bitstream/handle/20.500.12324/32788/64889_1.pdf?sequence=1&isAllowed=y

Filzmoser, P. and M. Gschwandtner. 2015. Mvoutlier: Multivariate outlier detection based on robust methods. R package version 2.0.6. Retrieved from: https://CRAN.R-project.org/package=mvoutlier (accessed 12 Dec. 2019)

Helal, N, and S. Abd-Elhady. 2015. Calcium and potassium fertilization may enhance potato tuber yield and quality. Middle East J. 4, 991-998.

Kuisma, P. 2002. Efficiency of split nitrogen fertilization with adjusted irrigation on potato. Agric. Food Sci. Finland 11, 59-74. Doi: https://doi.org/10.23986/afsci.5713

Li, H., L. Parent, and A. Karam. 2008. Simulation modeling of soil and plant nitrogen use in a potato cropping system in the humid and cool environment. Agr. Ecosyst. Environ. 115, 248-260. Doi: https://doi.org/10.1016/j.agee.2006.01.013

Marschner, P. 2012. Mineral nutrition of higher plants. 3rd ed. School of Agriculture, Food and Wine. Elsevier/academic Press, Amsterdan. Doi: https://doi.org/10.1017/S001447971100130X

MDA. 2018. Proposed permanent rules relating to groundwater protection. Minnesota Dep. Agric., St. Paul MN. Retrieved from: https://www.mda.state.mn.us/sites/default/files/inline-files/ar4337ADA_0.pdf; consulted: February, 2020.

Mendiburu, F. 2015. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.2-3. In: https://CRAN.R-project.org/package=agricolae; consulted: December, 2019.

Mousavi, S.R., M. Galavi, and G. Ahmadvan. 2007. Effect of zinc and manganese foliar application on yield, quality and enrichment on potato (Solanum tuberosum L.). Asian J. Plant Sci. 6(8), 1256-1260. Doi: https://doi.org/10.3923/ajps.2007.1256.1260

Nyiraneza, J., K.D. Fuller, A.J. Messiga, B. Bizimungu, S. Fillmore, and Y. Jiang. 2017. Potato response to phosphorus fertilization at two sites in Nova Scotia, Canada. Am. J. Potato Res, 94, 357-366. Doi: https://doi.org/10.1007/s12230-017-9571-7

Pérez, L.C., L.E. Rodríguez, and M.I. Gómez. 2008. Efecto del fraccionamiento de la fertilización con N, P, K y Mg y la aplicación de los micronutrientes B, Mn y Zn en el rendimiento y calidad de papa criolla (Solanum phureja) variedad Criolla Colombia. Agron. Colomb. 26(3), 477-486.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team. 2016. Nlme: linear and nonlinear mixed effects models R package version 3.1-124. Retrieved from: http://CRAN.R-project.org/package=nlme; consulted: December, 2019.

Quemada, M., M. Baranski., M.N.J. Nobel-de Lange., A. Vallejo, and J.M Cooper. 2013. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric. Ecosyst. Environ. 174, 1-10. Doi: https://doi.org/10.1016/j.agee.2013.04.018

R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. In: https://www.R-project.org/; December, 2019.

Rios, Q.J.Y., V.S.D. Jaramillo., S.L.H. González, and T.J.M. Cotes. 2010. Determination of the effect of fifferent levels of fertilization in potato (Solanum tuberosum ssp. Andigena) Diacol Capiro in a soil with properties andicas of Santa Rosa de Osos, Colombia. Rev. Fac. Nal. Agr. Medellín 63(1), 5225-5237.

Rosen, C.J, and P.M. Bierman. 2008. Potato yield and tuber set as affected by phosphorus fertilization. Am. J. Potato Res. 85, 110-120. Doi: https://10.1007/s12230-008-9001-y

Sahahnazari, A., S. Ahmadi, P. Laerke, F. Liu, F. Plauborg, S. Jacobsen, C. Jensen, and M. Andersen. 2008. Nitrogen dynamics in the soil plant system under deficit and partial root-zone drying irrigation strategies in potatoes. Eur. J. Agron. 28, 65-73. Doi: https://doi.org/10.1016/j.eja.2007.05.003

Setu, H, and T. Mitiku. 2020. Response of potato to nitrogen and phosphorus fertilizers at Assosa, western Ethiopia. Agron. J. 112, 1-11. Doi: https://doi.org/10.1002/agj2.20027

Scheffer, F. and P. Schachtschabel. 2016. Soil science. Springer. 16th ed. Germany. Doi: http://doi.org/10.1007/978-3-642-30942-7

Shrestha, R.K., L.R. Cooperband, and A.E. MacGuidwin. 2010. Strategies to reduce nitrate leaching into groundwater in potato grown in sandy soils: Case study from North Central USA. Am. J. Potato Res. 87, 229-244. Doi: https://doi.org/10.1007/s12230-010-9131-x

Singh, S.M. and A.K. Singh. 2020. Response of nitrogen levels on yield and growth attributes of potato (Solanum tuberosum L.). Int. J. Chem. Stud. 8, 599-601. Doi: https://doi.org/10.22271/chemi.2020.v8.i1i.8323

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. Retrieved from: https://ggplot2.tidyverse.org

Zebarth, B.J. and C.J. Rosen. 2007. Research perspective on nitrogen bmp development for potato. Amer. J. Potato Res. 84, 3-18. Doi: https://doi.org/10.1007/BF02986294

Citado por: