Fotoinhibición: Respuesta fisiológica de los vegetales al estrés por exceso de luz. Una revisión

Contenido principal del artículo

Autores

Fánor Casierra-Posada

Resumen

La luz es esencial para el crecimiento y desarrollo de las plantas, pero en alta intensidad, puede hacerse nociva. La fotoinhibición, definida como la inhibición de la fotosíntesis causada por el exceso de radiación, afecta la producción en condiciones de campo, en gran medida. La exposición adicional a factores de estrés durante la exposición a la radiación alta, aumenta el potencial del efecto fotoinhibitorio, de este modo, la inhibición de fotosíntesis indica que la planta está sometida a condiciones estresantes. La fotoinhibición puede ser reversible, jugando un papel de protección de los fotosistemas, pero también puede reflejar un daño que ya ha sucedido en el aparato fotosintético, caso en el cual, es irreversible. En esta revisión, se presentan algunos mecanismos fisiológicos y moleculares de la fotoinhibición y la interacción entre la luz y otros factores causantes de estrés y se discuten sus efectos en las plantas.

Palabras clave:

Detalles del artículo

Licencia

El copyright de los artículos e ilustraciones son propiedad de la Revista Colombiana de Ciencias Hortícolas. Los editores autorizan el uso de los contenidos bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0). La citación correcta de los contenido deben registrar de forma explícita el nombre de la revista, nombre(s) del (de los) autor(es), año, título del artículo, volumen, número, página del artículo y DOI. Se requiere un permiso escrito a los editores para publicar más que un resumen corto del texto o las figuras.

Referencias

Adir, N., H. Zer, S. Shochate I. Ohad. 2003. Photoinhibition - a historical perspective. Photosynth. Res. 76, 343-370.

Andersson, B. y S. Styring. 1991. Photosystem II: Molecular organsation, function and acclimation. Plant Physiol. Biochem. 31, 683-691.

Aro, E-M., I.Virgin y B. Andersson. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochem. Biophys. Acta 1143, 113-134.

Asada, K. 1994. Production and action of active oxigene species on photosynthetic tissues. En: Causes of Photooxidative stress and amelioration of defense systems in plants. Foyer, C.F. y P.M. Mullineaux (eds.). CRC Press, Boca Ratón, Florida. pp. 77-104.

Asada, K. 1999. The water-water cycle in chloroplasts: Scavenging of active oxigens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601-639.

Barber, J. y B. Andersson. 1992. Too much of a good thing can be bad for photosynthesis. Trends Biochem. Sci. 17, 61-66.

Bjokov, R.D. y V.E. Fioletov. 1996. Total ozone variations in the tropical belt: An application for quality of ground based measurements. Meteorol. Atmos. Phys. 58, 223-240.

Caldwell, M.M., A.H. Teramura y M. Tevini. 1989. The changing solarultraviolet climate and the ecological consecuences for higher plants. Trends Ecol. Evol. 4, 363-367.

Casano, L.M., L.D. Gomez, H.R.Lascano, C.A. Gonzales y V.S. Trippi. 1997. Inactivation and degradation of CuZn-SOD by active oxigen species in wheat chloroplasts exposed to photooxidative stress. Plant Cell Physiol. 38, 433-440.

Demming-Adams, B. y W.W. Adams. 1992. Photoprotection and others responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 43, 599-626.

Galmés, J., H. Medrano y J. Flexas. 2007. Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. Environ. Exp. Bot. 60(1), 105-111.

Havaux, M. y A. Davoud. 1994. Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem II activity. Preferencial inactivation of photosystem I. Photosynth. Res. 40, 75-92.

Havaux, M. y M. Eyletters. 1991. Is the in vivo photosystem I function resistant to photoinhibition? An answer from photoacoustic and far-red absorbance meassurements in intact leaves. Z. Naturforsch. 46c, 1038-1044.

Havaux, M., F. Eymery, S. Porfirova, P. Rey y P. Dömann. 2005. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17, 3451-3469.

Heldt, H. 1996. Pflanzenbiochemie. Spektrum Akademischer Verlag, Heidelberg. pp. 110-112.

Hideg, E. e l. Wass. 1995. Singlet oxigen is not produced in photosystem I under photoinhibitory conditions. Photochem. Photobiol. 62, 949-952.

Hogewoning, S.W. y J. Harbinson. 2007. Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf. J. Exp. Bot. 58(3), 453-463.

Horton, P., A.V. Ruban y R.G. Walters. 1994. Regulation of light harvesting in green plants. Plant Physiol. 106, 415-420.

Hua-Xin, C., L. Peng-Min y G. Hui-Yuan. 2007. Alleviation of photoinhibition by calcium supplement in salt-treated Rumex leaves. Physiol. Plan. 129(2), 386-396.

Inoue, K., H. Sakurai y T. Hiyama. 1986. Photoinactivation of photosystem I in isolated chloroplasts. Plant Cell Physiol. 27, 961-968.

Inoue, K., Y. Fujii, E. Yokoyama, K. Matsuura, K. Hiyama y H. Sakurai. 1989. The photoinhibition site of photosystem I in isolated choloroplasts under extremely reducing conditions. Plant Cell Physiol. 30, 65-71.

Jensen, P.E., R. Bassi, E.J. Boekema, J.P. Dekker, S. Jansson, D. Leister, C. Robinson y H.V. Scheller. 2007. Structure, function and regulation of plant photosystem I. Biochim. Biophys. Acta 1767, 335-352.

Joly, D. 2004. Research projects. Université du Québec à Trois-Rivières. En: http://www.uqtr.ca/labcarpentier/eng/research.htm, consulta: julio 2007.

Knoppik, D. 1999. Bedeutung der Photosynthese für die Agrarproduktion und den Kohlenstoffhaushalt der Erde. En: Häder, D.-P. (ed). Photosynthese. Editorial Thieme, Stuttgart. pp. 244-259.

Krause, G.H., H. Garden, C. Schmude, O.Y. Koroleva y K. Winter. 1998. Contribution of ambient UV light to photoinhibition of photosystem II in tropical plants. En: Garab, G. (ed.). Photosynthesis: Mechanisms and effects. Vol. III. pp. 2409-2412.

Krause, G.H., C. Schmude, H.Garden, O.Y. Koroleva y K. Winter. 1999. Effects of solar ultraviolet radiation on potential efficiency of photosystem II in leaves of tropical plants. Plant Physiol. 121, 1349-1358.

Lee, A.I.-C. y J.P. Thornber. 1995. Analysis of the pigment stoichiometry of pigment-proetin complexes from barley (Hordeum vulgare). The xanthopyll cycle intermediates occur mainly in the ligth-harvesting complexes of photosystem I and photosystem II. Plant Physiol. 107, 565-574.

Long, S.P., S.Humphries y P.G. Falkowski. 1994. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. 45, 633-662.

Lu, C., N. Qiu y Q. Lu. 2003. Photoinhibition and the xanthophyll cycle are not enhanced in the salt-acclimated halophyte Artimisia anethifolia. Physiol. Plant. 118(4), 532-537.

Luci ski, R. y G.Jackowski. 2006. The structure, functions and degradation of pigment-binding proteins of photosystem II. Acta Biochim. Pol. 534), 693-708.

Ma, Q.-Q., W. Wang, Y.-H. Li, D.-Q. Li y Q. Zou. 2006. Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycine- betaine. J. Plant Physiol. 163(2), 165-175.

Mattoo, A.K., H.Hoffman-Falk, J.B.Marder y M. Edelman. 1984. Regulation of protein metabolism: Coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32-kDa protein of the chloroplast membranes. Proc. Natl. Acad. Sci. 81, 1380-1384.

Madronich, S., R.L. Mckenzie, M.M. Cadwell y L.O. Björn. 1995. Changes in ultraviolet radiation reaching the earth’s surface. Ambio 24,143-152.

Miyake, C. y K. Asada.1992. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction if its primary oxidation product monodehydro-ascorbate radicals in thylakoids. Plant Cell Physiol. 33, 341-553.

Miyao, M., M.Ikeuchi, N. Yamamoto y T.A. Ono. 1995. Specific degradation of the D1 of photosystem II by tratment with hydrogen peroxide in darkness: Implication for the mechanism of degradation of the D1 protein under illumination. Biochemistry 34, 10019-10026.

Ogawa, K., S. Kanematsu, K. Takabe y K. Asada. 1995. Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: detection by immunogold labelling after rapid freezing and substitution method. Plant Cell Physiol. 36, 565-573.

Osmond, C.B. 1994. What is photoinhibition? Some insights from comparisions of shade and sun plants. En: Baker, N.R. y J.R. Bowyer (eds.). Photoinhibition of photosynthesis. Oxford (BIOS Scientific). pp. 1-24.

Powels, S.B. 1984. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. Plant Physiol. 35, 14-44.

Ramirez, J.M. 1996. Fotosíntesis. Absorción y utilización de la luz en la membrana fotosintética. En: Azcón-Bieto, J. y M. Talón (eds.). Bioquímica y fisiología vegetal, McGraw-Hill-Interamericana, Madrid. pp. 91-112.

Scheller, H.V., A. Haldrup. 2005. Photoinhibition of photosystem I. Planta 221, 5-8.

Schreiber, U., H. Hormann, K. Asada y C. Neubauer. 1995. O2-dependent electron flow in intact spinich chloroplasts: Properties and possible regulation of the Mehler-Ascorbate-Peroxidase cycle. En: Mathis, P. (ed.). Photosynthesis: From light to biosphere, Vol. II. Kluwer Academic Publishers, Dordrecht. pp. 813-818.

Sonoike, K. 1996a. Degradation of PsaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I: Possible involvement of active oxigen species. Plant Sci. 115, 157-164.

Sonoike, K. 1996b. Photoinhibition of photosystem I: Its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol. 37, 239-247.

Sonoike, K e I. Terashima. 1994. Mechanism of photosystem-I photoinhibition in leaves of Cucumis sativa L. Planta 194, 287-293.

Taiz, L. y E. Zeiger. 2000. Physiologie der Pflanzen. Spektrum Akademischer Verlag, Heidelberg. pp.236-237.

Terashima, I., S. Funayama y K. Sonoike. 1994. The site of photoinhibition in leaves of Cucumis sativa L. at low temperatures is photosystem I, not photosystem II. Planta 193, 300-306.

Tjus, S.E. 1995. Photosystem I, organizational and functional aspects. Tesis de doctorado. Universidad de Estocolmo, Suecia.

Tjus, S.E. y B. Anderson. 1993. Loss of the trans-tylacoid proton gradient is an erarly event during photoinhibitory illumination of chloroplast preparations. Biochim. Biophys. Acta 1183, 315-322.

Tjus, S.E., B.L. Möller y H.V. Scheller. 1998. Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiol. 116, 755-764.

Yordanov, I. y V. Veleikova. 2000. Photoinhibition of photosystem I. Bulg. J. Plant Physiol. 26(1-2), 70-92.

Zak, E. y H. Pakrasi. 2000. The BtpA protein stabilizies the reaction centre proteins of photosystem I in the Cyanobacterium Synechocystis sp. PCC 6803 at low temperature. Plant Physiol. 123, 223-233.

Ziska, L.H. 1996. The potential sensitivity of tropical plants to increased ultraviolet-B radiation. J. Plant Physiol. 148, 35-41.

Descargas

La descarga de datos todavía no está disponible.