Skip to main navigation menu Skip to main content Skip to site footer

Effect of stress by shading on sea lavender (Limonium sp. cv. Bluestream) plants yield

Abstract

Under natural conditions, the environmental light of plants varies spatially and temporally in terms of quality, quantity and duration. Reduction in light quantity affects numerous aspects of plant development. Many of these effects are related to the reduction in photosynthesis and consequential changes in sugar availability. The most studied responses are those of the induction of flowering and the elongation of stems and petioles. The effect of shading prior to cut of flowers in sea lavender plants cv. Blue stream on number of leaves and harvested flowers, the leaf specific weight and the flower stem length were evaluated. Plants grew under greenhouse conditions in Guasca (Colombia). For shading, black nets of 47 and 80% light reduction 1.5 m over plants were deployed. Control plants grew without a net over. Results showed reduction by all evaluated parameters through nets in comparison to control plants, but the stem length was more negatively influenced by shading. Flower stems were 36.5 and 49.0% shorter in comparison to those harvested in control plants under nets of 47 and 80% of light reduction, respectively, affecting strongly the flower quality for exportation. Results suggested high sensibility of sea lavender plants for light reduction.

Keywords

Cut flowers, Flower quality, Stress tolerance

PDF (Español)

References

  1. Abrams, M.C. y S.C. Mosteller. 1995. Gas exchange, leaf structure and nitrogen in contrasting tree species growing in open and understory sites during a drought. Tree Physiol. 15, 361-370.
  2. Alexieva, V., S. Ivanov, I. Sergiev y E. Karanov. 2003. Interaction between stresses. Bulg. J. Plant Physiol., special issue. 1-17.
  3. Armitage, A.M. 1991. Shade affects yield and stem length of field-grown cut. flower species. HortScience 26, 1174-1176
  4. Armitage, A.M. 1993 Specialty cut flowers. Varsity Press, Inc. Timber Press, Portland, Oregon. 372 p.
  5. Asocolflores. 2004. Estadística. En: www.org/info/info.php; consulta: marzo de 2005.
  6. Bazzaz F.A. y R.W. Carlson. 1982. Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia 54, 313-316.
  7. Ben Haj Salah, H. y F. Tardieu. 1995. Temperature affects leaf expansion rate of maize without change in spatial distribution of cell length. Analysis of the coordination between cell division and cell expansion. Plant Physiol. 109, 861-870.
  8. Casierra-Posada, F. 1999. Einfluß der Hagelschutznetze und des Sommerschnittes auf Apfelbäume bei unterschiedlicher Stickstoffversorgung. Tesis doctoral. Humboldt Universität zu Berlín, 104 p.
  9. Casierra-Posada, F. y P. Lüdders. 2001. Fotosíntesis y consumo de agua en árboles de manzano ‘Golden Deli- cious’ bajo sombra. Revista Comalfi 28(1), 1-6.
  10. Casierra-Posada, F. y P. Lüdders. 2001a. Einfluß von Sommerschnitt und N-Ernährung auf den Mineralstoffgehalt von Apfelbäumen unter Hagelschutznetz. Erwerbsobstbau 43, 106-113.
  11. Castro-Díez P., J. Navarro, A. Pintado, L.G. Sancho y M. Maestro. 2006. Interactive effects of shade and irrigation on the performance of seedlings of three Mediterranean Quercus species. Tree Physiol. 26, 389-400.
  12. Chamorro, A.H., S.L. Martínez, J.C. Fernández y T. Mosquera. 2007. Evaluación de diferentes concentraciones de algunos reguladores de crecimiento en la multiplicación y enraizamiento in vitro de Limonium var. Misty blue. Agron. Colomb. 25(1), 47-53.
  13. Chang, Y.T., Y.C. Wang, C.S. Chang, S.S. Wang y D.L. Lin. 2004. Effects of treat shading net to avoid devernalization of statice. pp. 59-66. En: http://book.tndais.gov.tw/RBulletin/44-4.pdf; consulta: 17 de agosto de 2007.
  14. Dengler, N.G. 1980. Comparative histological basis of sun and shade leaf dimorphism in Helianthus annuus. Can. J. Bot. 58, 717-730.
  15. Ebert, G. y F. Casierra. 2000. Verringert die Einnetzung grundsätlich die Assimilationsleistung von Apfelbäumen?. Erwerbsobstbau 42, 12-14.
  16. Escher, F. 1996. Kulturbeschreibungen. pp. 414-420. En: Escher, F. (ed.). Schnittblumenkulturen. Ulmer Verlag, Stuttgart.
  17. Espinosa, I., W. Healy y M. Roh. 1991. The role of temperature and photoperiod on Liatris spicata Shoot development. J. Amer. Soc. Hort. Sci. 116, 27-29.
  18. Franklin, K.A. y G.C. Whitelam. 2005. Phytochromes and shade-avoidance responses in plants. Ann. Bot. 96, 169-175.
  19. Givnish, T.J. 1988. Adaptation to sun and shade: A whole-plant perspective. Aust. J. Plant Physiol. 15, 63-92.
  20. Granier, C. y F. Tardieu. 1998. Is thermal time adequate for expressing the effects of temperature on sun- flower leaf development?. Plant Cell Environ. 21, 695-703.
  21. Granier, C., C. Massonnet, O. Turc, B. Muller, K. Chenu y F. Tardieu. 2002. Individual leaf development in Arabidopsis thaliana: a stable thermal-time-based programme. Ann. Bot. 89, 595-604.
  22. Guarnaschelli, A.B., G. Gutiérrez, A. Battaglia, P. Pathauer y J.H. Lemcoff. 2004. Influence of shading on physiology, morphology and growth of Eucalyptus seedlings. Conferencia Internacional IUFRO Eucalyptus in a Changing World. Aveiro, Portugal. 11- 15/10/2004 (en medio magnético).
  23. King, D.A. 1994. Influence of light level on the growth and morphology of samplings in a Panamanian forest. Amer. J. Bot. 81, 948-957.
  24. Kitajima, K. 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98, 419-428.
  25. Kobe, R.K. 1997. Carbohydrate allocation to storage as basis of interspecific variation in sampling survivorship and growth. Oikos 80, 226-233.
  26. Kozuka, T., G. Horiguchi, G.T. Kim, M. Ohgishi, T. Sakai y H. Tsukaya. 2005. The different growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are regulated by photoreceptors and sugar. Plant Cell Physiol. 46, 213-223.
  27. Kristoffersen, T. 1963. Interactions of photoperiod and temperature in growth and development of young tomato plants. Physiol. Plant. Suppl. 1, 1-98.
  28. Lafarge, T., M. de Raïssac y F. Tardieu. 1998. Elongation rate of sorghum leaves has a common response to meristem temperature in diverse African and European conditions. Field Crop Res. 58, 69-79.
  29. Lambers, H., F.S. Chapin y T.J. Pons. 1998. Plant Physiological Ecology. Springer-Verlag, New York. 540 p.
  30. Lambers, H. y H. Poorter. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Adv. Ecol. Res. 23, 187-261.
  31. Lee, D.W., S.F. Oberbauer, P. Johnson, B. Krishnapilay, M. Mansor, H. Mohamad y K.S. Yap. 2000. Effects of irradiance and spectral quality on leaf structure and function in seedlings of two Southeast Asian Hopea (Dipterocarpaceae) species. Amer. J. Bot. 87, 447-455.
  32. Lichtenthaler, H.K. 1983. Differences in morphology and chemical composition of leaves grown at different light intensities and qualities. pp. 201-221. En: Baker N.R., W.J. Davies y C.K. Ong (eds.). Control of leaf growth. University Press, Cambridge.
  33. Lusk, C.H. 2002. Leaf area accumulation helps juvenile evergreen trees tolerate shade in temperate rainforest. Oecologia 132, 188-196.
  34. Lusk, C.H. 2004 Adaptación a la sombra en especies arbóreas siempre/verdes. pp. 235-247. En: Cabrera, H.M. (ed.). Fisiología ecológica en plantas: Mecanismos y respuestas a estrés en los ecosistemas. Ediciones Universitarias de Valparaíso, Pontificia Universidad Católica de Valparaíso, Chile.
  35. Lusk, C.H. y O. Contreras. 1999. Foliage area and crown nitrogen turnover in temperate rainforest juvenile trees of differing shade tolerance. J. Ecol. 87, 973-983.
  36. Niimets, Ü. 1998. Growth of young trees of Acer platanoides and Quercus rubor along a gap-understory continuum: Interactionships between allometry, biomass partitioning, nitrogen and shade-tolerance. Int. J. Plant Sci. 159, 318-330.
  37. Reich, P.B. 1993. Reconciling apparent discrepancies among studies relating life span, structure and function of leaves in contrasting plant life form and climates: “The blind men and the elephant retold”. Funct. Ecol. 7, 721-725.
  38. Schiappacasse, F., G. Carrasco S. y F. Carrasco C. 2007. Efecto de cuatro niveles de sombreamiento sobre la calidad de vara floral y cormo de liatris (Liatris spicata). Agricultura Técnica 67(1), 100-104.
  39. Shifriss, C., M. Pilowsky y B. Aloni. 1994. Variation in flower abscission of peppers under stress shading conditions. Euphytica 78(1-2), 133-136.
  40. Schlichting, C.D. 1986. The evolution of phenotypic plasticity in plants. Annu. Rev. Ecol. Syst. 17, 677-693.
  41. Schmalhausen, I.I. 1949. Factors of evolution: The theory of stabilizing selection. Chicago University Press. 483 p.
  42. Schnyder, H. y C.J. Nelson. 1988. Diurnal distribution of tall fescue leaf blades. I. Spatial distribution of growth, deposition of water, and assimilate import in the elongation zone. Plant Physiol. 86, 1070-1076.
  43. Tognetti R., M. Michelozzi y M. Borghetti. 1994. Responses to light of shade-grown beech seedlings subjected to different watering regimes. Tree Physiol. 14, 751-758.
  44. Veneklaas, E.J. y L. Poorter. 1998. Growth and carbon partitioning of tropical tree seedlings in contrasting light environments. En: Lambers, H.; M.N.I. van Vuuren (eds.). Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys Publishers, Leiden, Holanda. 600 p.
  45. Volenec,J.J.yC.J.Nelson.1982.Diurnalleafelongationofcontrasting tall fescue genotypes. Crop Sci. 22, 531-535.
  46. Walters, M.B. y P.B. Reich. 1999. Research review low-light carbon balance and shade tolerance in the seedling of woody plants: Do winter deciduous and broadleaved evergreen species differ?. New Phytol. 143, 143-154.
  47. Williams, K., C.B. Field y H.A. Mooney. 1989. Relation-ships among leaf construction cost, leaf longevity and light environment in rain-forest plants of the genus Piper. The American Naturalist 133, 198-211.
  48. Wilson G.L. 1966. Studies on the expansion of the leaf surface. V. Cell division and expansion in a developing leaf as influenced by light and upper leaves. J. Exp. Bot. 17, 440-451.
  49. Yano, S. y I. Terashima. 2004. Developmental process of sun and shade leaves in Chenopodium album L. Plant Cell Environ. 27, 781-793.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.