Composition and abundance of weed-species in relation to physicochemical variables in soil for peach Prunus persica L. var. Rubidoux

Composición y abundancia de especies de malezas en relación a variables fisicoquímicas del suelo en el cultivo de durazno Prunus persica L. var. Rubidoux

Main Article Content

Nicolas Forero-Pineda
Pablo-Antonio Serrano-Cely
Fabio-Emilio Forero-Ulloa
Pedro-José Almanza-Merchán
Germán-Eduardo Cely-Reyes

Abstract

Weeds are the main biological constraint for production and sustainability in agricultural systems. This is due to the ability of weeds to modify soil physicochemical conditions (i.e., nutrients, pH, organic matter). It is for this reason that having information on the physicochemical characteristics of the soil within the crop allows observing ecological aspects and the distribution of weed species. The objective of this study was to determine the composition and frequency of weed species and their relationship with soil physicochemical variables in peach Prunus persica L. var. Rubidoux. This study determined the composition and frequency of weed species in relation to physicochemical variables in soil for apeach crop with a total of twenty 10×10 m quadrats within a 2 ha peach crop. Weed species were identified taxonomically. A physicochemical characterization of the soil was performed in each quadrat. A total of 13 weed species were recorded, distributed in 10 families and 8 orders, with the Asteraceae family being the most representative. Additionally, physicochemical variations were found in the soil samples in the peach crop. The soil data were contrasted with the distribution patterns and frequency of weed species. Some weed species were not individually related to the soil physicochemical variables. Our results support efforts to explore how variations in soil physicochemical conditions in a crop can modulate weed species distribution patterns.

Keywords:

Downloads

Download data is not yet available.

Article Details

References (SEE)

Allan, E., P. Manning, F. Alt, J. Binkenstein, S. Blaser, N. Blüthgen, S. Böhm, F. Grassein, N. Hölzel, V.H. Klaus, T. Kleinebecker, E.K. Morris, Y. Oelmann, D. Prati, S.C. Renner, M. C. Rillig, M. Schaefer, M. Schloter, B. Schmitt, I. Schöning, M. Schrumpf, E. Solly, E. Sorkau, J. Steckel, I. Steffen‐Dewenter, B. Stempfhuber, M. Tschapka, C.N. Weiner, W.W. Weisser, M. Werner, C. Westphal, W. Wilcke, and M. Fischer. 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18(8), 834-843. Doi: 10.1111/ele.12469

Barzman, M., A. Paolo Bàrberi, N.E. Birch, P.B. Silke, D. Saaydeh, B. Graf, B. Hommel, J.E. Jensen, J. Kiss, P. Kudsk, J.R. Lamichhane, A. Messéan, A.C. Moonen, A. Ratnadass, P. Ricci, J.L. Sarah, and M. Sattin. 2015. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199-1215. Doi: 10.1007/s13593-015-0327-9

Bengtsson, J., J. Ahnström, and A.C. Weibull. 2005. The effects of organic agriculture on biodiversity and abundance: a meta‐analysis. J. Appl. Ecol. 42, 261-269. Doi: 10.1111/j.1365-2664.2005.01005.x

Bernal, R., S.R. Gradstein, and M. Celis. 2019. Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, in: http://catalogoplantasdecolombia.unal.edu.co; consulted: January, 2021.

Berner, A., I. Hildermann, A. Fliessbach, L. Pfiffner, U. Niggli, and P. Mäder. 2008. Crop yield and soil fertility response to reduced tillage under organic management. Soil Till. Res. 101(1-2), 89-96. Doi: 10.1016/j.still.2008.07.012

Bilalis, D., A. Karkanis, A. Pantelia, S. Patsiali, A. Konstantas, and A. Efthimiadou. 2012. Weed populations are affected by tillage systems and fertilization practices in organic flax (Linum usitatissimum L.) crop. Aust. J. Crop Sci. 6(1), 157-163.

Bilalis, D., P. Papastylianou, A. Konstantas, S. Patsiali, A. Karkanis, and A. Efthimiadou. 2010. Weed-suppressive effects of maize-legume intercropping in organic farming. Int. J. Pest Manage. 56(2), 173-181, Doi: 10.1080/09670870903304471

Blackshaw, R.E., L.J. Molnar, and F.J. Larney. 2005. Fertilizer, manure and compost effects on weed growth and competition with winter wheat in western Canada. Crop Prot. 24(11), 971-980. Doi: 10.1016/j.cropro.2005.01.021

Bonham, C.D. 2013. Measurements for terrestrial vegetation. John Wiley & Sons, Oxford, UK. Doi: 10.1002/9781118534540

Buhler, D.D. 1995. Influence of tillage systems on weed population dynamics and management in corn and soybean in the Central USA. Crop Sci. 35, 1247-1258. Doi: 10.2135/cropsci1995.0011183X003500050001x

Cheimona, N., C. Angeli, E. Panagiotou, A. Tzanidaki, C. Drontza, I. Travlos, and D. Bilalis. 2016. Effect of different types of fertilization on weed flora in processed tomato crop. Procedia: Agric. Agric. Sci. 10, 26-31. Doi: 10.1016/j.aaspro.2016.09.005

Coffman, C.B. and J.R. Frank. 1992. Corn‐weed interactions with long‐term conservation tillage management. Agron. J. 84, 17-21. Doi: 10.2134/agronj1992.00021962008400010004x

Cousens, R. and M. Mortimer. 1995. Dynamics of weed populations. Cambridge University Press, Cambridge, UK. Doi: 10.1017/CBO9780511608629

Davis, A. 2007. Nitrogen fertilizer and crop residue effects on seed mortality and germination of eight annual weed species. Weed Sci. 55, 123-128. Doi: 10.1614/WS-06-133.1

Fried, G., L.R. Norton, and X. Reboud. 2008. Environmental and management factors determining weed species composition and diversity in France. Agric. Ecosyst. Environ. 128(1-2), 68-76. Doi: 10.1016/j.agee.2008.05.003

González, I., S. Déjean, P. Martin, and A. Baccini. 2008. CCA: An R package to extend canonical correlation analysis. J. Stat. Softw. 23, 1-14. Doi: 10.18637/jss.v023.i12

Gough, L., C.W. Osenberg, K.L. Gross, and S.L. Collins. 2000. Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89, 428-439. Doi: 10.1034/j.1600-0706.2000.890302.x

Grey, T., T. Webster, X. Li, W. Anderson, and G. Cutts. 2015. Evaluation of control of napiergrass (Pennisetum purpureum) with tillage and herbicides. Invasive Plant Sci. Manage. 8(4), 393-400. Doi: 10.1614/IPSM-D-15-00012.1

Gu, Q.Z., X.Y. Yang, B.H. Sun, S.L. Zhang, and Y.A. Tong. 2007. Ying yong sheng tai xue bao. J. Appl. Ecol. 18(5), 1038-1042.

Huang, S., X. Pan, Y. Sun, Y. Zhang, X. Hang, X. Yu, and W. Zhang. 2013. Fertilization and paddy weeds. Weed Biol. Manage. 13, 10-18. Doi: 10.1111/wbm.12004

Hyvönen, T., E. Ketoja, J. Salonen, H. Jalli, and J. Tiainen. 2003. Weed species diversity and community composition in organic and conventional cropping of spring cereals. Agric. Ecosyst. Environ. 97(1-3), 131-149. Doi: 10.1016/S0167-8809(03)00117-8

IGAC, Instituto Geográfico Agustín Codazzi. 2006. Métodos analíticos del laboratorio de suelos. Bogota.

IPNI, International Plant Names Index. 2021. Database, The Royal Botanic Gardens; Kew, Harvard University Herbaria & Libraries and Australian National Botanic Gardens, http://www.ipni.org; consulted: January, 2020.

Labrada, R. and P. Paper. 2003. Present trends in weed management. FAO Plant Production and Protection Paper (FAO). Rome.

Little, N., C. Mohler, Q. Ketterings, and A. DiTommaso. 2015. Effects of organic nutrient amendments on weed and crop growth. Weed Sci. 63(3), 710-722. Doi: 10.1614/ws-d-14-00151.1

Lorena Gámez, A., E. Carolina Cruz, G. Plaza, J. Cepeda, L. Rojas, M. Jaramillo, and V. Hoyos. 2018. Guía Ilustrada de plantas arvenses del Centro Agropecuario Marengo (CAM), Universidad Nacional de Colombia, Bogota.

Mbong, E., S. Osu, D. Uboh, and I. Ekpo. 2020. Abundance and distribution of species in relation to soil properties in sedge-dominated habitats in Uyo Metropolis, Southern Nigeria. Global J. Ecol. 5, 24-29. 10.17352/gje.000015

Melander, B., N. Munier-Jolain, R. Charles, J. Wirth, J. Schwarz, R. van der Weide, L. Bonin, P. K. Jensen, and P. Kudsk. 2013. European perspectives on the adoption of nonchemical weed management in reduced-tillage systems for arable crops. Weed Technol. 27(1), 231-240. Doi: 10.1614/WT-D-12-00066.1

Murphy, C.E. and D. Lemerle. Continuous cropping systems and weed selection. Euphytica 148, 61-73. 2006. Doi: 10.1007/s10681-006-5941-9

Ni, N.T., S. Zhang, B. Sun, H. Yi, and X. Yang. 2017. Long-term diverse fertilizer management on weed species and communities in winter wheat field. Am. J. Plant Sci. 8(8), 1790-1800. Doi: 10.4236/ajps.2017.88122

Nichols, V., N. Verhulst, R. Cox, and B. Govaerts. 2015. Weed dynamics and conservation agriculture principles: A review. Field Crops Res. 183, 56-68. Doi: 10.1016/j.fcr.2015.07.012

Ogbemudia, F. and E. Mbong. 2013. Studies on some pedological indices, nutrient flux pattern and plant distribution in Metropolitan Dumpsites in Uyo, Akwa Ibom state. Indian J. Pharm. Biol. Res. 1(02), 40-45. Doi: 10.30750/ijpbr.1.2.8

Okezie Akobundu, I. and C. Agyakwa. 1998. A handbook of west African weeds. 2nd ed. Revised and Expanded. International Institute of Tropical Agriculture, Ibadan, Nigeria.

Oksanen, J., R. Kindt, P. Legendre, B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, and H. Wagner. 2013. Vegan: Community ecology package. R package version 2.3-5. In: http://CRAN.R-project.org/package=vegan; consulted: June, 2021.

Pakeman, R.J., R.W. Brooker, A.J. Karley, A.C. Newton, C. Mitchell, R.L. Hewison, J. Pollenus, D.C. Guy, and C. Schöb. 2020. Increased crop diversity reduces the functional space available for weeds. Weed Res. 60, 121-131. Doi: 10.1111/wre.12393

Pinke, G., P. Karácsony, B. Czúcz, Z. Botta‐Dukát, and A. Lengyel. 2012. The influence of environment, management and site context on species composition of summer arable weed vegetation in Hungary. Appl. Veg. Sci. 15, 136-144. Doi: 10.1111/j.1654-109X.2011.01158.x

Power, A.G. 2010. Ecosystem services and agriculture: tradeoffs and synergies Phil. Trans. R. Soc. B. 365, 2959-2971. Doi: 10.1098/rstb.2010.0143

Puente, G.A. and A. Castro. 2012. Ciruelo y duraznero. pp. 370-392. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.

Rassam, G., N. Latifi, A. Soltani, and B. Kamkar. 2011. Impact of crop management on weed species diversity and community composition of winter wheat fields in Iran. Weed Biol. Manage. 11, 83-90. Doi: 10.1111/j.1445-6664.2011.00407.x

Santín-Montanyá, M.I., D. Martín-Lammerding, I. Walter, E. Zambrana, and J.L. Tenorio. 2013. Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J Agron. 48, 43-49. Doi: 10.1016/j.eja.2013.02.006

Seppelt, R., S. Lautenbach, and M. Volk. 2013. Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Curr. Opin. Environ. Sustain. 5(5), 458-463. Doi: 10.1016/j.cosust.2013.05.002

Sheley, R.L., J.J. James, M.J. Rinella, D.M. Blumenthal, and J.M. DiTomaso. 2011. Invasive plant management on anticipated conservation benefits: a scientific assessment. pp. 291-336. In: Briske, D.D. (ed.). Conservation benefits of rangeland practices: Assessment, recommendations, and knowledge gaps. USDA Natural Resources Conservation Service, Lawrence, KS.

Smith, R.G., D.A. Mortensen, and M.R. Ryan. 2010. A new hypothesis for the functional role of diversity in mediating resource pools and weed-crop competition in agroecosystems. Weed Res. 50, 37-48. Doi: 10.1111/j.1365-3180.2009.00745.x

Storkey, J., S. Moss, and J. Cussans. 2010. Using assembly theory to explain changes in a weed flora in response to agricultural intensification. Weed Sci. 58(1), 39-46. Doi: 10.1614/WS-09-096.1

Suding, K.N., S.L. Collins, L. Gough, C. Clark, E.E. Cleland, K.L. Gross, D.G. Milchunas, and S. Pennings. 2005. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl. Acad. Sci. USA 102(12), 4387-4392. Doi: 10.1073/pnas.0408648102

Sweeney, A., K. Renner, C. Laboski, and A. Davis. 2008. Effect of fertilizer nitrogen on weed emergence and growth. Weed Sci. 56(5), 714-721. Doi: 10.1614/WS-07-096.1

Team R. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Thomas, A.G., D.A. Derksen, R.E. Blackshaw, R.C. Van Acker, A. Légère, P.R. Watson, and G.C. Turnbul. 2004. A multistudy approach to understanding weed population shifts in medium- to long-term tillage systems. Weed Sci. 52, 874-880 Doi: 10.1614/WS-04-010R1

Travlos, I.S. 2010. Legumes as cover crops or components of intercropping systems and their effects on weed populations and crop productivity. pp. 151-164. In: Greco, A.J. (ed.). Progress in food science and technology. Nova Science Publishers, Hauppauge, NY.

Travlos, I.S. 2013. Weeds in perennial crops as an unexpected tool of integrated crop management. pp. 97-114. In: Taab, A. (ed.). Weeds and their ecological functions. Nova Science Publishers, Hauppauge, NY.

Travlos, I.S., N. Cheimona, I. Roussis, and D.J. Bilalis. 2018. Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Front. Environ. Sci. 6, 11. Doi: 10.3389/fenvs.2018.00011

Ubom, R.M., F.O. Ogbemudia, and K.O. Benson. 2012. Soil-vegetation relationship in fresh water swamp forest. Sci. J. Biol. Sci. 1(2), 43-51.

Ugen, M., H. Wien, and C. Wortmann. 2002. Dry bean competitiveness with annual weeds as affected by soil nutrient availability. Weed Sci. 50(4), 530-535. Doi: 10.1614/0043-1745(2002)050[0530:DBCWAW]2.0.CO;2

van Elsen, T. 2000. Species diversity as a task for organic agriculture in Europe. Agric. Ecosyst. Environ. 77(1-2), 101-109. Doi: 10.1016/S0167-8809(99)00096-1

Vasquez, E., R. Sheley, and T. Svejcar. 2008. Creating invasion resistant soils via nitrogen management. Invasive Plant Sci. Manage. 1(3), 304-314. Doi: 10.1614/IPSM-07-059.1

Zubizarreta, L. and L. Díaz. 2014. Guía de reconocimiento de malezas. Syngenta, Rosario, Argentina.

Citado por: