Skip to main navigation menu Skip to main content Skip to site footer

Sunburn disorder in tropical and subtropical fruits. A review

Yellowing with reddish coloration on avocado fruit as a result of sunburn. Photo: G. Fischer

Abstract

The increase in solar radiation and temperature as a result of climate change and variability has increased sunburn damage to fruits, which highly affects quality and yield in tropical and subtropical fruit plants. Solar injuries increase because of conditions with low relative humidity, fruits left uncovered by foliage, and plantations at higher altitudes as a result of increased UV radiation. Three different types of sunburn on fruits are distinguished: photooxidative sunburn, sunburn browning, and necrosis on the epidermis. Fruits employ self-protection mechanisms against this stress through the production of enzymatic and non-enzymatic antioxidants. Fruit growers try to mitigate the impact of sunburning by planting species and varieties that are tolerant to this stress, pruning and training plants, leaving enough leaves above the fruit, efficient irrigation and intercropping for shading. More technical sunburn mitigation strategies include 1) improving the microclimate (shading nets, fruit bagging, evaporative cooling), 2) suppressors (kaolinite clay particle films, calcium carbonate) or 3) chemical protection (tocopherol, abscisic acid, ascorbic acid, anti-transpirants). This paper presents the state of research and its results for this abiotic stress in some tropical and subtropical fruit trees, such as avocado, banana, citrus, mango, pineapple and pitaya, along with observations for other fruit trees in tropical altitude zones. Continued research is recommended for this stress in different varieties with the use of environmentally friendly protective materials, along with studies on molecular mechanisms that direct the acclimatization of plants to a combination of these two types of stress, excessive radiation and temperature.

Keywords

Solar injury, Antioxidants, Shading nets, Kaolin, Pineapple, Citrus

PDF

References

  • Abd-Allah, A.S.E., E. Abd El-Razek, and M.M.S. Saleh. 2013. Effect of sun-block materials on preventing sunburn injury of Keitt mango fruits. J. Appl. Sci. Res. 9(1), 567-571.
  • Ali, M.M., R. Anwar, A.F. Yousef, B. Li, A. Luvisi, L. De Bellis, A. Aprile, and F. Chen. 2021. Influence of bagging on the development and quality of fruits. Plants 10, 358. Doi: https://doi.org/10.3390/plants10020358
  • Amarante, C.V.T. do, A. Miqueloto, and C.A. Steffens. 2012. Cultivo de macieira em ambiente protegido. pp. 75-104. In: Chavarria, G. and H.P. dos Santos (eds.). Fruticultura em ambiente protegido. Embrapa, Brasilia.
  • Amarante, C.V.T. do, C.A. Steffens, and L.C. Argenta. 2011. Yield and fruit quality of ‘Gala’ and ‘Fuji’ apple trees protected by white anti-hail net. Sci. Hortic. 129(1), 79-85. Doi: https://doi.org/10.1016/j.scienta.2011.03.010
  • Araújo, A.L.F. and D. de Britto. 2021. Rapid protocol to evaluate the photoprotective effect of film-forming formulations on mangoes. Rev. Bras. Frutic. 432, e-118. Doi: https://doi.org/10.1590/0100-29452021118
  • Bagheri, M., M. Gholami, and B. Baninasab. 2021. Role of hydrogen peroxide pre-treatment on the acclimation of pistachio seedlings to salt stress. Acta Physiol. Plant. 43, 43-51. Doi: https://doi.org/10.1007/s11738-021-03223-3
  • Baiea, M.H.M., S.F. EL-Gioushy, and H.E.M. El-Badawy. 2018. Efficacy of kaolin and screen duo spraying on fruit sunburn, yield and fruit quality of Keitt mango fruits. J. Plant Prod. Mansoura Univ. 9(12), 1013-1020. Doi: https://doi.org/10.21608/jpp.2018.36619
  • Basile, B., M. Giaccone, C. Cirillo, A. Ritieni, G. Graziani, Y. Shahak, and M. Forlani. 2012. Photo-selective hail nets affect fruit size and quality in Hayward kiwifruit. Sci. Hortic. 141, 91e97. Doi: https://doi.org/10.1016/j.scienta.2012.04.022
  • Ben-Yakir, D., M. Hadar, Y. Offir, M. Chen, and M. Tregerman. 2008. Protecting crops from pests using OptiNet (R) screens and ChromatiNet (R) shading nets. Acta Hortic. 770, 205-212. Doi: https://doi.org/10.17660/ActaHortic.2008.770.24
  • Benavides, H.O., O. Simbaqueva, and H.J. Zapata. 2017. Atlas de radiación solar, ultravioleta y ozono de Colombia. In: Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), https://www.andi.com.co//Uploads/RADIACION.compressed.pdf; consulted: December, 2022.
  • Blakey, R.J., Z. van Rooyen, J.S. Köhne, K.C. Malapana, E. Mazhawu, S.Z. Tesfay, and M.J. Savage. 2016. Growing avocados under shadenetting – Year 3. South African Avocado Growers’ Association Yearbook 39, 80-83.
  • Blanke, M.M. and F. Lenz. 1989. Fruit photosynthesis. Plant Cell Environ. 12(1), 31-46. Doi: https://doi.org/10.1111/j.1365-3040.1989.tb01914.x
  • Bolivar-Medina, J.L. and L. Kalcsits. 2022. Quemadura de sol en manzanas y estrategias para mitigarla. WSU Tree Fruit. In: http://treefruit.wsu.edu/recursos-en-espanol/quemadura-de-sol-en-manzanas-y-estrategias-para-mitigarla/?print-view=true; consulted; October, 2022.
  • Botina, B.L., M.C. García, and Y. Romero. 2019. Pre- and post-harvest factors that affect the quality and commercialization of the Tahiti lime. Sci. Hortic. 257, 108737. Doi: https://doi.org/10.1016/j.scienta.2019.108737
  • Brito, C., L.-T. Dinis, J. Moutinho-Pereira, and C. Correia. 2019. Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance. Sci. Hortic. 250, 310-316. Doi: https://doi.org/10.1016/j.scienta.2019.02.070
  • Casierra-Posada, F. 2007. Fotoinhibición: Respuesta fisiológica de los vegetales al estrés por exceso de luz. Rev. Colomb. Cienc. Hortic. 1, 114-123. Doi: https://doi.org/10.17584/rcch.2007v1i1.1150
  • Castellano, S., A. Candura, and G. Scarascia Mugnozza. 2008. Relationship between solidity ratio, colour and shading effect of agricultural nets. Acta Hortic. (801), 253e258. Doi: https://doi.org/10.17660/ActaHortic.2008.801.24
  • Chabbal, M.D., A.B. Piccoli, G.C. Martínez, M.M. Avanza, S.M. Mazza, and V.A. Rodríguez. 2014. Aplicaciones de caolín para el control del golpe de sol en mandarino 'Okitsu'. Cult. Trop. 35(1), 50-56.
  • Chang, P.-T., C.-C. Hsieh, and Y.-L. Jiang. 2016. Responses of ‘Shih Huo Chuan’ pitaya (Hylocereus polyrhizus (Weber) Britt. & Rose) to different degrees of shading nets. Sci. Hortic. 198, 154-162. Doi: https://doi.org/10.1016/j.scienta.2015.11.024
  • Chawla, R., A. Sheokand, M.R. Rai, and R.K. Sadawarti. 2021. Impact of climate change on fruit production and various approaches to mitigate these impacts. Pharma Innov. J. 10(3), 564-571.
  • Cleves, J.A., A.J. Jarma, and G.A. Puentes. 2012. Maracuyá (Passiflora edulis f. flavicarpa y f. purpurea L.). pp. 682-700. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  • David, A. and L.S. Felicetti. 2008. Photooxidative sunburn of apples: Characterization of a third type of apple sunburn. Int. J. Fruit Sci. 8, 160-172.
  • Ebrahimzadeh, M.A., R. Enayatifard, M. Khalili, M. Ghaffarloo, M. Saeedi, and J.Y. Charati. 2014. Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iran. J. Pharm. Res. 13, 1041-1047.
  • Ennab, H.A., S.A. El-Sayed, and M.M.S. Abo El-Enin. 2017. Effect of kaolin applications on fruit sunburn, yield and fruit quality of Balady mandarin (Citrus reticulata, Blanco). Menoufia J. Plant Prod. 2, 129-138. Doi: https://doi.org/10.21608/mjppf.2017.176024
  • Felicetti, D.A. and L.E. Schrader. 2009. Changes in pigment concentrations associated with sunburn browning of five apple cultivars. I. Chlorophylls Carotenoids. Plant Sci. 176, 78-83. Doi: http://doi.org/10.1016/j.plantsci.2008.09.013
  • Feng, Y., S. Li, R. Jia, J. Yang, Q. Su, and Z. Zhao. 2022. Physiological characteristics of sunburn peel after apple debagged. Molecules 27, 3775. Doi: https://doi.org/10.3390/molecules27123775
  • Fischer, G., H.E. Balaguera-López, and J. Álvarez-Herrera. 2021a. Causes of fruit cracking in the era of climate change. A review. Agron. Colomb. 39(2), 196-207. Doi: https://doi.org/10.15446/agron.colomb.v39n2.97071
  • Fischer, G., H.E. Balaguera-López, and S. Magnitskiy. 2021b. Review on the ecophysiology of important Andean fruits: Solanaceae. Rev. U.D.C.A Act. Divulg. Cient. 24(1), e1701. Doi: http://doi.org/10.31910/rudca.v24.n1.2021.1701
  • Fischer, G., F. Casierra-Posada, and W. Piedrahíta. 2009. Ecofisiología de las especies pasifloráceas cultivadas en Colombia. pp. 45-67. In: Miranda, D., G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra, W. Piedrahíta, and L.E. Flórez (eds.). Cultivo, poscosecha y comercialización de las pasifloráceas en Colombia: maracuyá, granadilla, gulupa y curuba. Sociedad Colombiana de Ciencias Hortícolas, Bogota.
  • Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortic. 14(1), 76-89. Doi: https://doi.org/10.17584/rcch.2020v14i1.10893
  • Fischer, G., L.M. Melgarejo, and H.E. Balaguera-López. 2022b. Review on the impact of elevated CO2 concentrations on fruit species in the face of climate change. Cienc. Tecnol. Agropecu. 23(2), e2475. Doi: https://doi.org/10.21930/rcta.vol23_num2_art:2475
  • Fischer, G., L.M. Melgarejo, and D. Miranda. 2012. Guayaba (Psidium guajava L.). pp. 526-549. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  • Fischer, G. and D. Miranda. 2021. Review on the ecophysiology of important Andean fruits: Passiflora L. Rev. Fac. Nac. Agron. Medellin 74(2), 9471-9481. Doi: https://doi.org/10.15446/rfnam.v74n2.91828
  • Fischer, G. and J.O. Orduz-Rodríguez. 2012. Ecofisiología en frutales. pp. 54-72. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  • Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022a. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2), 212-227. Doi: https://doi.org/10.15446/agron.colomb.v40n2.101854
  • Fischer, G., F. Ramírez, and F. Casierra-Posada. 2016. Ecophysiological aspects of fruit crops in the era of climate change. A review. Agron. Colomb. 34(2), 190-199. Doi: https://doi.org/10.15446/agron.colomb.v34n2.56799
  • Glenn, D.M. 2012. The mechanisms of plant stress mitigation by kaolin based particle films and applications in horticulture and agricultural crops. HortScience 47(6), 710-711. Doi: https://doi.org/10.21273/HORTSCI.47.6.710
  • Glenn, D.M. and G.J. Puterka. 2005. Particle films: A new technology for agriculture. Hort. Rev. 31, 1-44. Doi: https://doi.org/10.1002/9780470650882.ch1
  • Gora, J.S., A.K. Verma, J. Singh, and D.R. Choudhary. 2019. Climate change and production of horticultural crops. In: Kumar, R., V.P. Singh, D. Jhajharia, and R. Mirabbasi (eds.). Agricultural impacts of climate change. CRC Press, Boca Raton, FL. Doi: https://doi.org/10.1201/9780429326349-3
  • Guerrero, M. 2014. Quemados. Mundo Agrícola 56, 2-5. In: https://www.nutriprove.cl/wp-content/uploads/Mundo-Agricola-56-Julio.pdf; consulted: October, 2022.
  • Hamdy, A.E., H.F. Abdel-Aziz, H. El-khamissi, N.I. AlJwaizea, A.A. El-Yazied, S. Selim, M.M. Tawfik, K. AlHarbi, M.S.M. Ali, and A. Elkelish. 2022. Kaolin improves photosynthetic pigments, and antioxidant content, and decreases sunburn of mangoes: Field Study. Agron. 12, 1535. Doi: https://doi.org/10.3390/agronomy12071535
  • Herrera, J.A., E. Venegas, and L. Madrigal. 2017. Proportions of mechanical damages and their effect on post-harvest quality of avocado ‘Hass’. Rev. Mex. Cienc. Agric. 19, 3897-3909. Doi: https://doi.org/10.29312/remexca.v0i19.659
  • Hinojosa-Gómez, J., C. San Martín-Hernández, J.B. Heredia, J. León-Félix, T. Osuna-Enciso, and M.D. Muy-Rangel. 2020. Anthocyanin induction by drought stress in the calyx of roselle cultivars. Molecules 25, 1555. Doi: https://doi.org/10.3390/molecules25071555
  • Kalcsits, L., S. Musacchi, D.R. Layne, T. Schmidt, G. Mupambi, S. Serra, and S. Sankaran. 2017. Above and below-ground environmental changes associated with the use of photoselective protective netting to reduce sunburn in apple. Agric. For. Meteorol. 237, 9-17. Doi: https://doi.org/10.1016/j.agrformet.2017.01.016
  • Kim, M., Y. Park, S.K. Yun, S.S. Kim, J. Joa, Y.-E. Moon, and G.-R. Do. 2022. The anatomical differences and physiological responses of sunburned Satsuma mandarin (Citrus unshiu Marc.) fruits. Plants 11, 1801. Doi: https://doi.org/10.3390/plants11141801
  • Kochhar, S.L. and S.K. Gujral. 2020. Plant physiology. Theory and applications. 2nd ed. Cambridge University Press, Cambridge, UK. Doi: https://doi.org/10.1017/9781108486392
  • Körner, C. 2007. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22(11), 569-574. Doi: https://doi.org/10.1016/j.tree.2007.09.006
  • Kourgialas, N.N. and Z. Dokou. 2021. Water management and salinity adaptation approaches of avocado trees: A review for hot-summer Mediterranean climate. Agric. Water Manage. 252, 106923. Doi: https://doi.org/10.1016/j.agwat.2021.106923
  • Krause, G.H., C. Schmude, H. Garden, O.Y. Koroleva, and K. Winter. 1999. Effects of solar ultraviolet radiation on the potential efficiency of photosystem II in leaves of tropical plants. Plant Physiol. 121, 1349-1358. Doi: https://doi.org/10.1104/pp.121.4.1349
  • Lal, N. and N. Sahu. 2017. Management strategies of sun burn in fruit crops - A review. Int. J. Curr. Microbiol. Appl. Sci. 6(6), 1126-1138. Doi: https://doi.org/10.20546/ijcmas.2017.606.131
  • Lee, T.C., P.J. Zhong, and P.T. Chang. 2015. The effects of preharvest shading and postharvest storage temperatures on the quality of ‘Ponkan’ (Citrus reticulata Blanco) mandarin fruits. Sci. Hortic. 188, 57-65. Doi: https://doi.org/10.1016/J.SCIENTA.2015.03.016
  • Lima, J.D., E.W. Engelking, D.E. Rozane, E.N. Gomes, S.H.M.G. da Silva, and R.A. Kluge. 2020. Effect of bunch protection material and bagging time on the yield of 'Nanica' banana and chilling control. Aust. J. Crop Sci. 14(4), 574-580. Doi: https://doi.org/10.21475/ajcs.20.14.04.p1909
  • Lopes, O.P., V.M. Maia, S.R. Dos Santos, G.P. Mizobutsi, and R.F. Pegoraro. 2014. Proteções contra queima solar de frutos de abacaxizeiro submetido a diferentes lâminas de irrigação. Rev. Bras. Frutic. 36(3), 748-754. Doi: https://doi.org/10.1590/0100-2945-273/13
  • Malik, A., M. Hasan, S. Khalid, M. Mazhar, M. Khalid, B. Saleem, A.S. Khan, and R. Anwar. 2021. Biotic and abiotic factors causing rind blemishes in citrus and management strategies to improve the cosmetic quality of fruits. Int. J. Agric. Biol. 25, 298-318. Doi: https://doi.org/10.17957/IJAB/15.1670
  • Manja, K. and M. Aoun. 2019. The use of nets for tree fruit crops and their impact on the production: A review. Sci. Hortic. 246, 110-122. Doi: https://doi.org/10.1016/j.scienta.2018.10.050
  • Martins, R.C., J.M.A. Souza, M.S. Silva, N.S. Parreiras, M.S.C. da Silva, A.C.B. Bolfarini, R.B. Ferreira, and S. Leonel. 2019. Production and quality of banana ‘BRS Conquista’ bagged with different colored polypropylene bags. Rev. Colomb. Cienc. Hortic. 13(2), 171-177. Doi: https://doi.org/10.17584/rcch.2019v13i2.9418
  • Mditshwa, A., L.S. Magwaza, and S.Z. Tesfay. 2019. Shade netting on subtropical fruit: Effect on environmental conditions, tree physiology and fruit quality. Sci. Hortic. 256, 108556. Doi: https://doi.org/10.1016/j.scienta.2019.108556
  • Merzlyak, M.N., T.B. Melø, and K.R Naqvi. 2008. Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: Signature analysis, assessment, modelling, and relevance to photoprotection. J. Exp. Bot. 2008, 349-359. Doi: https://doi.org/10.1093/jxb/erm316
  • Mishra, D., A. Tripathi, and P. Nimbolkar. 2016. Review on physiological disorders of tropical and subtropical fruits: causes and management approach. Int. J. Agric. Environ. Biotechnol. 9, 925-935. Doi: https://doi.org/10.5958/2230-732X.2016.00120.0
  • Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15-19. Doi: https://doi.org/10.1016/j.tplants.2005.11.002
  • Mohamed, H.M., M.A.A. Omran, and S.M. Mohamed. 2019. Effect of foliar spraying of some materials on protecting Murcott mandarin fruits from sunburn injuries. Middle East J. Agric. 8(2), 514-524.
  • Mohsen, F.S. and M.M. Ibrahim. 2021. Reducing fruit sunburn and splitting in Murrcot tangarine fruits by using silicate application. Arab Univ. J. Agric. Sci. 29(1), 437-445. Doi: https://doi.org/10.21608/ajs.2021.54154.1314
  • Moutinho-Pereira, J., B. Gonçalves, E. Bacelar, J. Boaventura Cunha, J. Coutinho, and C.M. Correia. 2009. Effects of elevated CO2 on grapevine (Vitis vinifera L.): Physiological and yield attributes. Vitis 48, 159-165.
  • Muchie, A. and F. Assefa. 2021. Impact of climate change on horticultural crops production and quality: A review. Amer. J. Biosci. Bioeng. 9(6), 156-161. https://doi.org/10.11648/j.bio.20210906.12
  • Muchui, M.N., F.M. Mathooko, C.K. Njoroge, E.M. Kahangi, C.A. Onyango, and E.M. Kimani. 2010. Effect of perforated blue polyethylene bunch covers on selected postharvest quality parameters of tissuecultured bananas (Musa spp.) cv. Williams in Central Kenya. J. Stored Prod. Postharv. Res. 1(3), 29-41.
  • Mukherjee, A., S. Knoch, G. Chouinard, J.R. Tavares, and M.-J. Dumont. 2019. Use of bio-based polymers in agricultural exclusion nets: A perspective. Biosyst. Eng. 180, 121-145. Doi: https://doi.org/10.1016/j.biosystemseng.2019.01.017
  • Munné-Bosch, S. and C. Vincent. 2019. Physiological mechanisms underlying fruit sunburn. Crit. Rev. Plant Sci. 38(2), 1-18. Doi: https://doi.org/10.1080/07352689.2019.1613320
  • Muñoz, P. and S. Munné-Bosch. 2018. Photo-oxidative stress during leaf, flower and fruit development. Plant Physiol. 176, 1004-1014. Doi: https://doi.org/10.1104/pp.17.01127
  • Mupambi, G., B.M. Anthony, D.R. Layne, S. Musacchi, S. Serra, T. Schmidt, and L.A. Kalcsits. 2018. The influence of protective netting on tree physiology and fruit quality of apple: A review. Sci. Hortic. 236, 60e72. Doi: https://doi.org/10.1016/j.scienta.2018.03.014
  • Musacchi, S. and S. Serra. 2018. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 234, 409-430. Doi: https://doi.org/10.1016/j.scienta.2017.12.057
  • Narayan, L. and N. Sahu. 2017. Management strategies of sunburn in fruit crops. A review. Int. J. Curr. Microbiol. App. Sci 6(6), 1126-1138. Doi: https://doi.org/10.20546/ijcmas.2017.606.131
  • Nobel, P.S. and E. de la Barrera. 2002. High temperatures and net CO2 uptake, growth, and stem damage for the hemiepiphytic cactus Hylocereus undatus. Biotropica 34(2), 225-231. Doi: https://doi.org/10.1111/j.1744-7429.2002.tb00533.x
  • Oliveira, M.M.T. de, F.G. Albano-Machado, D.M. Penha, M.M. Pinho, W. Natale, M.R.A. de Miranda, C.F.H. Moura, R.E. Alves, and M.C.M. Corrêa. 2021. Shade improves growth, photosynthetic performance, production and postharvest quality in red pitahaya (Hylocereus costaricensis). Sci. Hortic. 286, 110217. Doi: https://doi.org/10.1016/j.scienta.2021.110217
  • Padrón-Mederos, M., B. Rodríguez-Galdón, C. Díaz-Romero, M.G. Lobo-Rodrigo, and E.M. Rodríguez-Rodríguez. 2020. Quality evaluation of minimally fresh-cut processed pineapples. Lwt. Food Sci. Technol. 129, 109607. Doi: https://doi.org/10.1016/j.lwt.2020.109607
  • Parchomchuk, P. and M. Meheriuk. 1996. Orchard cooling with pulsed over-tree irrigation to prevent sunburn and improve fruit quality of ‘Jonagold’ apples. HortScience 31(5), 802-804. Doi: https://doi.org/10.21273/HORTSCI.31.5.802
  • Park, Y., M. Kim, S.K. Yun, S.S. Kim, and J. Joa. 2022. A simple model for predicting sunburn on Satsuma mandarin fruit. Sci. Hortic. 292, 110658. Doi: https://doi.org/10.1016/j.scienta.2021.110658
  • Parkhe, S.R., M.H. Dahale, D.H. Paithankar, P.K. Nagre, and Y.V. Ingle. 2022. Study of chemical substances on preventing sunburn injury of mandarin. Pharma Innov. J. 11(2), 751-755.
  • Rachappanavar, V., A. Padiyal, J.K. Sharma, and S.K. Gupta. 2022. Plant hormone-mediated stress regulation responses in fruit crops - a review. Sci. Hortic. 304, 111302. Doi: https://doi.org/10.1016/j.scienta.2022.111302
  • Racsko, J. and L.E. Schrader. 2012. Sunburn of apple fruit: Historical background, recent advances and future perspectives. Crit. Rev. Plant Sci. 31, 455-504.
  • Racskó, J., T. Szabó, J. Nyéki, M. Soltész, P.T. Nagy, D.D. Miller, and Z. Szabó. 2010. Characterization of sunburn damage to apple fruits and leaves. Int. J. Hort. Sci. 16(4), 15-20. Doi: https://doi.org/10.31421/IJHS/16/4/909
  • Raffo, M.D., A. Cortona, M. Curetti, F. Menni, and V. De Angelis. 2015. Empleo de mallas antigranizo para el control del asoleado en manzanas (Malus domestica Borkh), en el Alto Valle de Río Negro. Hortic. Arg. 34(83), 20-30.
  • Ramírez-Gil, J.G. and J.G. Morales. 2019. Polyphasic identification of preharvest pathologies and disorders in avocado cv. Hass. Agron. Colomb. 37(3), 213-227. Doi: https://doi.org/10.15446/agron.colomb.v37n3.78528
  • Rao, M.J., L. Wang, U. Ahmad, M.H. Ahmad, and S. Hussain. 2022. Citrus metabolic and antioxidant responses to high light stress. In: Sajjad, H., M.F. Khalid, M.A. Ali, N. Ahmed, M. Hasanuzzaman, and S. Ahmad (eds.). Citrus production - Technological advancements and adaptation to changing climate. CRC Press, Boca Raton, FL. https://doi.org/10.1201/9781003119852
  • Rehman, M.U., G.H. Rather, Y. Gull, M.R. Mir, M.M. Mir, U.I. Waida, and K.R. Hakeem. 2015. Effect of climate change on horticultural crops. In: Hakeem K.R. (ed.). Crop production and global environmental issues. Springer International Publishing Switzerland. Doi: https://doi.org/10.1007/978-3-319-23162-4_9
  • Restrepo-Díaz, H. and A.D. Sánchez-Reinoso. 2020. Ecophysiology of fruit crops: A glance at its impact on fruit crop productivity. pp. 59-66. In: Srivastava, A.K. and C. Hu (eds.). Fruit crops: Diagnosis and management of nutrient constraints, Elsevier. Doi: https://doi.org/10.1016/B978-0-12-818732-6.00005-8
  • Reyes, C. 2012. Papaya (Carica papaya L.). pp. 755-775. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  • Rodriguez, J., A. Anoruo, J. Jifon, and C. Simpson. 2019. Physiological effects of exogenously applied reflectants and anti-transpirants on leaf temperature and fruit sunburn in Citrus. Plants 8, 549. Doi: https://doi.org/10.3390/plants8120549
  • Sánchez-Reinoso, A.D., Y. Jiménez-Pulido, J.P. Martínez-Pérez, C.S. Pinilla, and G. Fischer. 2019. Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Rev. Colomb. Cienc. Hortic. 13(3), 325-335. Doi: https://doi.org/10.17584/rcch.2019v13i3.100171
  • Santosh, D.T., K.N. Tiwari, and R.G. Reddy. 2017. Banana bunch covers for quality banana production - a review. Int. J. Curr. Microbiol. Appl. Sci. 6, 1275-1291. Doi: https://doi.org/10.20546/ijcmas.2017.607.155
  • Saric, S. and R.K. Sivamani. 2016. Polyphenols and sunburn. Int. J. Mol. Sci. 17, 1521. Doi: https://doi.org/10.3390/ijms17091521
  • Schaffer, B. and A.W. Whiley. 2003. Environmental regulation of photosynthesis in avocado trees – a mini-review. pp. 335-342. Proc. V World Avocado Congr.
  • Schrader, L.E. 2011. Scientific basis of a unique formulation for reducing sunburn of fruits. HortScience 46(1), 6-11. Doi: https://doi.org/10.21273/HORTSCI.46.1.6
  • Schrader, L.E., D.A. Felicetti, J. Sun, J.-Z. Xu, J.-G. Zhang, and C.B. Kahn. 2008. Effects of high temperature and high solar irradiance on sunburn fruit quality, and skin pigments of apple. Acta Hortic. 903, 1025-1039. Doi: https://doi.org/10.17660/ActaHortic.2011.903.144
  • Shaban, A.E.A., M.I.M. El-Banna, and A.A. Rashedy. 2021. Mitigation of excessive solar radiation and water stress on ‘Keitt’ mango Mangifera indica trees through shading. Acta Sci. Pol. Hortorum Cultus 20(4), 77-88. Doi: https://doi.org/10.24326/asphc.2021.4.7
  • Sharma, R.R., S.V.R. Reddy, and M.J. Jhalegar. 2014. Pre-harvest fruit bagging: A useful approach for plant protection and improved post-harvest fruit quality - A review. J. Hortic. Sci. Biotechnol. 89, 101-113. Doi: https://doi.org/10.1080/14620316.2014.11513055
  • Stuckens, J., S. Dzikiti, W.W. Verstraeten, S. Verreynne, R. Swennen, and P. Coppin. 2011. Physiological interpretation of a hyperspectral time series in a citrus orchard. Agric. For. Meteorol. 151, 1002-1015. Doi: https://doi.org/10.1016/j.agrformet.2011.03.006
  • Sun, Y.J., Y.L. Gao, H. Wang, X.H. Yang, H. Zhai, and Y.P. Du. 2018. Stimulation of cyclic electron flow around PSI as a response to the combined stress of high light and high temperature in grape leaves. Funct. Plant Biol. 45, 1038-1045. Doi: https://doi.org/10.1071/FP17269
  • Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed, Porto Alegre, Brazil.
  • Teixeira, G.C.M., J.S.P. Junior, B.-H. Mattiuz, R.M. Prado, A.J. Corea, A.M.S. Rocha, and D.W. Valec. 2022. Spraying of calcium carbonate nanoparticles on pineapple fruit reduces sunburn damage. South Afr. J. Bot. 148, 643-651. Doi: https://doi.org/10.1016/j.sajb.2022.04.004
  • Thorpe, M.R. 1974. Radiant heating of apples. J. Appl. Ecol. 11, 755-760. Doi: https://doi.org/10.2307/2402224
  • Tinyane, P.P., P. Soundy, and D. Sivakumar. 2018. Growing ‘Hass’ avocado fruit under different coloured shade netting improves the marketable yield and affects fruit ripening. Sci. Hortic. 230, 43-49. Doi: https://doi.org/10.1016/j.scienta.2017.11.020
  • Tsai, M.-S., T.-C. Lee, and P.-T. Chang. 2013. Comparison of paper bags, calcium carbonate, and shade nets for sunscald protection in ‘Murcott’ tangor fruit. HortTechnol. 23(5), 659-667. Doi: https://doi.org/10.21273/HORTTECH.23.5.659
  • Wahid, A., S. Gelani, M. Ashraf, and M.R. Foolad. 2007. Heat tolerance in plants: An overview. Environ. Exp. Bot. 61, 199-223. Doi: https://doi.org/10.1016/j.envexpbot.2007.05.011
  • Woolf, A.B. and I.B. Ferguson. 2000. Postharvest responses to high fruit temperatures in the field. Postharvest Biol. Technol. 21, 7-20. Doi: https://doi.org/10.1016/S0925-5214(00)00161-7
  • Wolstenholme, B.N. 2007. Ecología: El clima y el ambiente edáfico. pp. 75-101. In: El palto. Botánica, producción y usos. Ediciones Universitarias de Valparaíso, Valparaiso, Chile.
  • Yin, L.H., Y.J. Zou, X.W. Ke, D. Liang, X. Du, Y.Y. Zhao, Q.Q. Zhang, and F.W. Ma. 2013. Phenolic responses of resistant and susceptible Malus plants induced by diplocarpon mali. Sci. Hortic. 164, 17-23. Doi: https://doi.org/10.1016/j.scienta.2013.08.037
  • Yohannes, H. 2016. A review on relationship between climate change and agriculture. J. Earth Sci. Clim. Change 7(2), 335. Doi: https://doi.org/10.4172/2157-7617.1000335
  • Zhang, J.L., J.P. Niu, Y. Duan, M.X. Zhang, J.Y. Liu, P.M. Li, and F.W. Ma. 2015. Photoprotection mechanism in the ‘Fuji’ apple peel at different levels of photooxidative sunburn. Physiol. Plant. 2015, 154, 54-65. Doi: https://doi.org/10.1111/ppl.12272
  • Zhang, C., H. Yi, X. Gao, T. Bai, Z. Ni, Y. Chen, M. Wang, Y. Zhang, J. Pan, W. Yu, and D. Xie. 2022. Effect of different altitudes on morpho-physiological attributes associated with mango quality. Diversity 14, 876. Doi: https://doi.org/10.3390/d14100876
  • Zhao, W., W. Yang, Z. Ma, X. Zhang, L. Cha, S. Liu, and Y. Zhang. 2020. Effects of time and height of shading on yield and quality of Pineapple. IOP Conf. Ser.: Earth Environ. Sci. 512, 012101. Doi: https://doi.org/10.1088/1755-1315/512/1/012101

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 5 6 > >> 

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.