Skip to main navigation menu Skip to main content Skip to site footer

Sunburn disorder in tropical and subtropical fruits. A review

Yellowing with reddish coloration on avocado fruit as a result of sunburn. Photo: G. Fischer

Abstract

The increase in solar radiation and temperature as a result of climate change and variability has increased sunburn damage to fruits, which highly affects quality and yield in tropical and subtropical fruit plants. Solar injuries increase because of conditions with low relative humidity, fruits left uncovered by foliage, and plantations at higher altitudes as a result of increased UV radiation. Three different types of sunburn on fruits are distinguished: photooxidative sunburn, sunburn browning, and necrosis on the epidermis. Fruits employ self-protection mechanisms against this stress through the production of enzymatic and non-enzymatic antioxidants. Fruit growers try to mitigate the impact of sunburning by planting species and varieties that are tolerant to this stress, pruning and training plants, leaving enough leaves above the fruit, efficient irrigation and intercropping for shading. More technical sunburn mitigation strategies include 1) improving the microclimate (shading nets, fruit bagging, evaporative cooling), 2) suppressors (kaolinite clay particle films, calcium carbonate) or 3) chemical protection (tocopherol, abscisic acid, ascorbic acid, anti-transpirants). This paper presents the state of research and its results for this abiotic stress in some tropical and subtropical fruit trees, such as avocado, banana, citrus, mango, pineapple and pitaya, along with observations for other fruit trees in tropical altitude zones. Continued research is recommended for this stress in different varieties with the use of environmentally friendly protective materials, along with studies on molecular mechanisms that direct the acclimatization of plants to a combination of these two types of stress, excessive radiation and temperature.

Keywords

Solar injury, Antioxidants, Shading nets, Kaolin, Pineapple, Citrus

PDF

References

  1. Abd-Allah, A.S.E., E. Abd El-Razek, and M.M.S. Saleh. 2013. Effect of sun-block materials on preventing sunburn injury of Keitt mango fruits. J. Appl. Sci. Res. 9(1), 567-571.
  2. Ali, M.M., R. Anwar, A.F. Yousef, B. Li, A. Luvisi, L. De Bellis, A. Aprile, and F. Chen. 2021. Influence of bagging on the development and quality of fruits. Plants 10, 358. Doi: https://doi.org/10.3390/plants10020358
  3. Amarante, C.V.T. do, A. Miqueloto, and C.A. Steffens. 2012. Cultivo de macieira em ambiente protegido. pp. 75-104. In: Chavarria, G. and H.P. dos Santos (eds.). Fruticultura em ambiente protegido. Embrapa, Brasilia.
  4. Amarante, C.V.T. do, C.A. Steffens, and L.C. Argenta. 2011. Yield and fruit quality of ‘Gala’ and ‘Fuji’ apple trees protected by white anti-hail net. Sci. Hortic. 129(1), 79-85. Doi: https://doi.org/10.1016/j.scienta.2011.03.010
  5. Araújo, A.L.F. and D. de Britto. 2021. Rapid protocol to evaluate the photoprotective effect of film-forming formulations on mangoes. Rev. Bras. Frutic. 432, e-118. Doi: https://doi.org/10.1590/0100-29452021118
  6. Bagheri, M., M. Gholami, and B. Baninasab. 2021. Role of hydrogen peroxide pre-treatment on the acclimation of pistachio seedlings to salt stress. Acta Physiol. Plant. 43, 43-51. Doi: https://doi.org/10.1007/s11738-021-03223-3
  7. Baiea, M.H.M., S.F. EL-Gioushy, and H.E.M. El-Badawy. 2018. Efficacy of kaolin and screen duo spraying on fruit sunburn, yield and fruit quality of Keitt mango fruits. J. Plant Prod. Mansoura Univ. 9(12), 1013-1020. Doi: https://doi.org/10.21608/jpp.2018.36619
  8. Basile, B., M. Giaccone, C. Cirillo, A. Ritieni, G. Graziani, Y. Shahak, and M. Forlani. 2012. Photo-selective hail nets affect fruit size and quality in Hayward kiwifruit. Sci. Hortic. 141, 91e97. Doi: https://doi.org/10.1016/j.scienta.2012.04.022
  9. Ben-Yakir, D., M. Hadar, Y. Offir, M. Chen, and M. Tregerman. 2008. Protecting crops from pests using OptiNet (R) screens and ChromatiNet (R) shading nets. Acta Hortic. 770, 205-212. Doi: https://doi.org/10.17660/ActaHortic.2008.770.24
  10. Benavides, H.O., O. Simbaqueva, and H.J. Zapata. 2017. Atlas de radiación solar, ultravioleta y ozono de Colombia. In: Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), https://www.andi.com.co//Uploads/RADIACION.compressed.pdf; consulted: December, 2022.
  11. Blakey, R.J., Z. van Rooyen, J.S. Köhne, K.C. Malapana, E. Mazhawu, S.Z. Tesfay, and M.J. Savage. 2016. Growing avocados under shadenetting – Year 3. South African Avocado Growers’ Association Yearbook 39, 80-83.
  12. Blanke, M.M. and F. Lenz. 1989. Fruit photosynthesis. Plant Cell Environ. 12(1), 31-46. Doi: https://doi.org/10.1111/j.1365-3040.1989.tb01914.x
  13. Bolivar-Medina, J.L. and L. Kalcsits. 2022. Quemadura de sol en manzanas y estrategias para mitigarla. WSU Tree Fruit. In: http://treefruit.wsu.edu/recursos-en-espanol/quemadura-de-sol-en-manzanas-y-estrategias-para-mitigarla/?print-view=true; consulted; October, 2022.
  14. Botina, B.L., M.C. García, and Y. Romero. 2019. Pre- and post-harvest factors that affect the quality and commercialization of the Tahiti lime. Sci. Hortic. 257, 108737. Doi: https://doi.org/10.1016/j.scienta.2019.108737
  15. Brito, C., L.-T. Dinis, J. Moutinho-Pereira, and C. Correia. 2019. Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance. Sci. Hortic. 250, 310-316. Doi: https://doi.org/10.1016/j.scienta.2019.02.070
  16. Casierra-Posada, F. 2007. Fotoinhibición: Respuesta fisiológica de los vegetales al estrés por exceso de luz. Rev. Colomb. Cienc. Hortic. 1, 114-123. Doi: https://doi.org/10.17584/rcch.2007v1i1.1150
  17. Castellano, S., A. Candura, and G. Scarascia Mugnozza. 2008. Relationship between solidity ratio, colour and shading effect of agricultural nets. Acta Hortic. (801), 253e258. Doi: https://doi.org/10.17660/ActaHortic.2008.801.24
  18. Chabbal, M.D., A.B. Piccoli, G.C. Martínez, M.M. Avanza, S.M. Mazza, and V.A. Rodríguez. 2014. Aplicaciones de caolín para el control del golpe de sol en mandarino 'Okitsu'. Cult. Trop. 35(1), 50-56.
  19. Chang, P.-T., C.-C. Hsieh, and Y.-L. Jiang. 2016. Responses of ‘Shih Huo Chuan’ pitaya (Hylocereus polyrhizus (Weber) Britt. & Rose) to different degrees of shading nets. Sci. Hortic. 198, 154-162. Doi: https://doi.org/10.1016/j.scienta.2015.11.024
  20. Chawla, R., A. Sheokand, M.R. Rai, and R.K. Sadawarti. 2021. Impact of climate change on fruit production and various approaches to mitigate these impacts. Pharma Innov. J. 10(3), 564-571.
  21. Cleves, J.A., A.J. Jarma, and G.A. Puentes. 2012. Maracuyá (Passiflora edulis f. flavicarpa y f. purpurea L.). pp. 682-700. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  22. David, A. and L.S. Felicetti. 2008. Photooxidative sunburn of apples: Characterization of a third type of apple sunburn. Int. J. Fruit Sci. 8, 160-172.
  23. Ebrahimzadeh, M.A., R. Enayatifard, M. Khalili, M. Ghaffarloo, M. Saeedi, and J.Y. Charati. 2014. Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iran. J. Pharm. Res. 13, 1041-1047.
  24. Ennab, H.A., S.A. El-Sayed, and M.M.S. Abo El-Enin. 2017. Effect of kaolin applications on fruit sunburn, yield and fruit quality of Balady mandarin (Citrus reticulata, Blanco). Menoufia J. Plant Prod. 2, 129-138. Doi: https://doi.org/10.21608/mjppf.2017.176024
  25. Felicetti, D.A. and L.E. Schrader. 2009. Changes in pigment concentrations associated with sunburn browning of five apple cultivars. I. Chlorophylls Carotenoids. Plant Sci. 176, 78-83. Doi: http://doi.org/10.1016/j.plantsci.2008.09.013
  26. Feng, Y., S. Li, R. Jia, J. Yang, Q. Su, and Z. Zhao. 2022. Physiological characteristics of sunburn peel after apple debagged. Molecules 27, 3775. Doi: https://doi.org/10.3390/molecules27123775
  27. Fischer, G., H.E. Balaguera-López, and J. Álvarez-Herrera. 2021a. Causes of fruit cracking in the era of climate change. A review. Agron. Colomb. 39(2), 196-207. Doi: https://doi.org/10.15446/agron.colomb.v39n2.97071
  28. Fischer, G., H.E. Balaguera-López, and S. Magnitskiy. 2021b. Review on the ecophysiology of important Andean fruits: Solanaceae. Rev. U.D.C.A Act. Divulg. Cient. 24(1), e1701. Doi: http://doi.org/10.31910/rudca.v24.n1.2021.1701
  29. Fischer, G., F. Casierra-Posada, and W. Piedrahíta. 2009. Ecofisiología de las especies pasifloráceas cultivadas en Colombia. pp. 45-67. In: Miranda, D., G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra, W. Piedrahíta, and L.E. Flórez (eds.). Cultivo, poscosecha y comercialización de las pasifloráceas en Colombia: maracuyá, granadilla, gulupa y curuba. Sociedad Colombiana de Ciencias Hortícolas, Bogota.
  30. Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortic. 14(1), 76-89. Doi: https://doi.org/10.17584/rcch.2020v14i1.10893
  31. Fischer, G., L.M. Melgarejo, and H.E. Balaguera-López. 2022b. Review on the impact of elevated CO2 concentrations on fruit species in the face of climate change. Cienc. Tecnol. Agropecu. 23(2), e2475. Doi: https://doi.org/10.21930/rcta.vol23_num2_art:2475
  32. Fischer, G., L.M. Melgarejo, and D. Miranda. 2012. Guayaba (Psidium guajava L.). pp. 526-549. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  33. Fischer, G. and D. Miranda. 2021. Review on the ecophysiology of important Andean fruits: Passiflora L. Rev. Fac. Nac. Agron. Medellin 74(2), 9471-9481. Doi: https://doi.org/10.15446/rfnam.v74n2.91828
  34. Fischer, G. and J.O. Orduz-Rodríguez. 2012. Ecofisiología en frutales. pp. 54-72. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  35. Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022a. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2), 212-227. Doi: https://doi.org/10.15446/agron.colomb.v40n2.101854
  36. Fischer, G., F. Ramírez, and F. Casierra-Posada. 2016. Ecophysiological aspects of fruit crops in the era of climate change. A review. Agron. Colomb. 34(2), 190-199. Doi: https://doi.org/10.15446/agron.colomb.v34n2.56799
  37. Glenn, D.M. 2012. The mechanisms of plant stress mitigation by kaolin based particle films and applications in horticulture and agricultural crops. HortScience 47(6), 710-711. Doi: https://doi.org/10.21273/HORTSCI.47.6.710
  38. Glenn, D.M. and G.J. Puterka. 2005. Particle films: A new technology for agriculture. Hort. Rev. 31, 1-44. Doi: https://doi.org/10.1002/9780470650882.ch1
  39. Gora, J.S., A.K. Verma, J. Singh, and D.R. Choudhary. 2019. Climate change and production of horticultural crops. In: Kumar, R., V.P. Singh, D. Jhajharia, and R. Mirabbasi (eds.). Agricultural impacts of climate change. CRC Press, Boca Raton, FL. Doi: https://doi.org/10.1201/9780429326349-3
  40. Guerrero, M. 2014. Quemados. Mundo Agrícola 56, 2-5. In: https://www.nutriprove.cl/wp-content/uploads/Mundo-Agricola-56-Julio.pdf; consulted: October, 2022.
  41. Hamdy, A.E., H.F. Abdel-Aziz, H. El-khamissi, N.I. AlJwaizea, A.A. El-Yazied, S. Selim, M.M. Tawfik, K. AlHarbi, M.S.M. Ali, and A. Elkelish. 2022. Kaolin improves photosynthetic pigments, and antioxidant content, and decreases sunburn of mangoes: Field Study. Agron. 12, 1535. Doi: https://doi.org/10.3390/agronomy12071535
  42. Herrera, J.A., E. Venegas, and L. Madrigal. 2017. Proportions of mechanical damages and their effect on post-harvest quality of avocado ‘Hass’. Rev. Mex. Cienc. Agric. 19, 3897-3909. Doi: https://doi.org/10.29312/remexca.v0i19.659
  43. Hinojosa-Gómez, J., C. San Martín-Hernández, J.B. Heredia, J. León-Félix, T. Osuna-Enciso, and M.D. Muy-Rangel. 2020. Anthocyanin induction by drought stress in the calyx of roselle cultivars. Molecules 25, 1555. Doi: https://doi.org/10.3390/molecules25071555
  44. Kalcsits, L., S. Musacchi, D.R. Layne, T. Schmidt, G. Mupambi, S. Serra, and S. Sankaran. 2017. Above and below-ground environmental changes associated with the use of photoselective protective netting to reduce sunburn in apple. Agric. For. Meteorol. 237, 9-17. Doi: https://doi.org/10.1016/j.agrformet.2017.01.016
  45. Kim, M., Y. Park, S.K. Yun, S.S. Kim, J. Joa, Y.-E. Moon, and G.-R. Do. 2022. The anatomical differences and physiological responses of sunburned Satsuma mandarin (Citrus unshiu Marc.) fruits. Plants 11, 1801. Doi: https://doi.org/10.3390/plants11141801
  46. Kochhar, S.L. and S.K. Gujral. 2020. Plant physiology. Theory and applications. 2nd ed. Cambridge University Press, Cambridge, UK. Doi: https://doi.org/10.1017/9781108486392
  47. Körner, C. 2007. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22(11), 569-574. Doi: https://doi.org/10.1016/j.tree.2007.09.006
  48. Kourgialas, N.N. and Z. Dokou. 2021. Water management and salinity adaptation approaches of avocado trees: A review for hot-summer Mediterranean climate. Agric. Water Manage. 252, 106923. Doi: https://doi.org/10.1016/j.agwat.2021.106923
  49. Krause, G.H., C. Schmude, H. Garden, O.Y. Koroleva, and K. Winter. 1999. Effects of solar ultraviolet radiation on the potential efficiency of photosystem II in leaves of tropical plants. Plant Physiol. 121, 1349-1358. Doi: https://doi.org/10.1104/pp.121.4.1349
  50. Lal, N. and N. Sahu. 2017. Management strategies of sun burn in fruit crops - A review. Int. J. Curr. Microbiol. Appl. Sci. 6(6), 1126-1138. Doi: https://doi.org/10.20546/ijcmas.2017.606.131
  51. Lee, T.C., P.J. Zhong, and P.T. Chang. 2015. The effects of preharvest shading and postharvest storage temperatures on the quality of ‘Ponkan’ (Citrus reticulata Blanco) mandarin fruits. Sci. Hortic. 188, 57-65. Doi: https://doi.org/10.1016/J.SCIENTA.2015.03.016
  52. Lima, J.D., E.W. Engelking, D.E. Rozane, E.N. Gomes, S.H.M.G. da Silva, and R.A. Kluge. 2020. Effect of bunch protection material and bagging time on the yield of 'Nanica' banana and chilling control. Aust. J. Crop Sci. 14(4), 574-580. Doi: https://doi.org/10.21475/ajcs.20.14.04.p1909
  53. Lopes, O.P., V.M. Maia, S.R. Dos Santos, G.P. Mizobutsi, and R.F. Pegoraro. 2014. Proteções contra queima solar de frutos de abacaxizeiro submetido a diferentes lâminas de irrigação. Rev. Bras. Frutic. 36(3), 748-754. Doi: https://doi.org/10.1590/0100-2945-273/13
  54. Malik, A., M. Hasan, S. Khalid, M. Mazhar, M. Khalid, B. Saleem, A.S. Khan, and R. Anwar. 2021. Biotic and abiotic factors causing rind blemishes in citrus and management strategies to improve the cosmetic quality of fruits. Int. J. Agric. Biol. 25, 298-318. Doi: https://doi.org/10.17957/IJAB/15.1670
  55. Manja, K. and M. Aoun. 2019. The use of nets for tree fruit crops and their impact on the production: A review. Sci. Hortic. 246, 110-122. Doi: https://doi.org/10.1016/j.scienta.2018.10.050
  56. Martins, R.C., J.M.A. Souza, M.S. Silva, N.S. Parreiras, M.S.C. da Silva, A.C.B. Bolfarini, R.B. Ferreira, and S. Leonel. 2019. Production and quality of banana ‘BRS Conquista’ bagged with different colored polypropylene bags. Rev. Colomb. Cienc. Hortic. 13(2), 171-177. Doi: https://doi.org/10.17584/rcch.2019v13i2.9418
  57. Mditshwa, A., L.S. Magwaza, and S.Z. Tesfay. 2019. Shade netting on subtropical fruit: Effect on environmental conditions, tree physiology and fruit quality. Sci. Hortic. 256, 108556. Doi: https://doi.org/10.1016/j.scienta.2019.108556
  58. Merzlyak, M.N., T.B. Melø, and K.R Naqvi. 2008. Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: Signature analysis, assessment, modelling, and relevance to photoprotection. J. Exp. Bot. 2008, 349-359. Doi: https://doi.org/10.1093/jxb/erm316
  59. Mishra, D., A. Tripathi, and P. Nimbolkar. 2016. Review on physiological disorders of tropical and subtropical fruits: causes and management approach. Int. J. Agric. Environ. Biotechnol. 9, 925-935. Doi: https://doi.org/10.5958/2230-732X.2016.00120.0
  60. Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15-19. Doi: https://doi.org/10.1016/j.tplants.2005.11.002
  61. Mohamed, H.M., M.A.A. Omran, and S.M. Mohamed. 2019. Effect of foliar spraying of some materials on protecting Murcott mandarin fruits from sunburn injuries. Middle East J. Agric. 8(2), 514-524.
  62. Mohsen, F.S. and M.M. Ibrahim. 2021. Reducing fruit sunburn and splitting in Murrcot tangarine fruits by using silicate application. Arab Univ. J. Agric. Sci. 29(1), 437-445. Doi: https://doi.org/10.21608/ajs.2021.54154.1314
  63. Moutinho-Pereira, J., B. Gonçalves, E. Bacelar, J. Boaventura Cunha, J. Coutinho, and C.M. Correia. 2009. Effects of elevated CO2 on grapevine (Vitis vinifera L.): Physiological and yield attributes. Vitis 48, 159-165.
  64. Muchie, A. and F. Assefa. 2021. Impact of climate change on horticultural crops production and quality: A review. Amer. J. Biosci. Bioeng. 9(6), 156-161. https://doi.org/10.11648/j.bio.20210906.12
  65. Muchui, M.N., F.M. Mathooko, C.K. Njoroge, E.M. Kahangi, C.A. Onyango, and E.M. Kimani. 2010. Effect of perforated blue polyethylene bunch covers on selected postharvest quality parameters of tissuecultured bananas (Musa spp.) cv. Williams in Central Kenya. J. Stored Prod. Postharv. Res. 1(3), 29-41.
  66. Mukherjee, A., S. Knoch, G. Chouinard, J.R. Tavares, and M.-J. Dumont. 2019. Use of bio-based polymers in agricultural exclusion nets: A perspective. Biosyst. Eng. 180, 121-145. Doi: https://doi.org/10.1016/j.biosystemseng.2019.01.017
  67. Munné-Bosch, S. and C. Vincent. 2019. Physiological mechanisms underlying fruit sunburn. Crit. Rev. Plant Sci. 38(2), 1-18. Doi: https://doi.org/10.1080/07352689.2019.1613320
  68. Muñoz, P. and S. Munné-Bosch. 2018. Photo-oxidative stress during leaf, flower and fruit development. Plant Physiol. 176, 1004-1014. Doi: https://doi.org/10.1104/pp.17.01127
  69. Mupambi, G., B.M. Anthony, D.R. Layne, S. Musacchi, S. Serra, T. Schmidt, and L.A. Kalcsits. 2018. The influence of protective netting on tree physiology and fruit quality of apple: A review. Sci. Hortic. 236, 60e72. Doi: https://doi.org/10.1016/j.scienta.2018.03.014
  70. Musacchi, S. and S. Serra. 2018. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 234, 409-430. Doi: https://doi.org/10.1016/j.scienta.2017.12.057
  71. Narayan, L. and N. Sahu. 2017. Management strategies of sunburn in fruit crops. A review. Int. J. Curr. Microbiol. App. Sci 6(6), 1126-1138. Doi: https://doi.org/10.20546/ijcmas.2017.606.131
  72. Nobel, P.S. and E. de la Barrera. 2002. High temperatures and net CO2 uptake, growth, and stem damage for the hemiepiphytic cactus Hylocereus undatus. Biotropica 34(2), 225-231. Doi: https://doi.org/10.1111/j.1744-7429.2002.tb00533.x
  73. Oliveira, M.M.T. de, F.G. Albano-Machado, D.M. Penha, M.M. Pinho, W. Natale, M.R.A. de Miranda, C.F.H. Moura, R.E. Alves, and M.C.M. Corrêa. 2021. Shade improves growth, photosynthetic performance, production and postharvest quality in red pitahaya (Hylocereus costaricensis). Sci. Hortic. 286, 110217. Doi: https://doi.org/10.1016/j.scienta.2021.110217
  74. Padrón-Mederos, M., B. Rodríguez-Galdón, C. Díaz-Romero, M.G. Lobo-Rodrigo, and E.M. Rodríguez-Rodríguez. 2020. Quality evaluation of minimally fresh-cut processed pineapples. Lwt. Food Sci. Technol. 129, 109607. Doi: https://doi.org/10.1016/j.lwt.2020.109607
  75. Parchomchuk, P. and M. Meheriuk. 1996. Orchard cooling with pulsed over-tree irrigation to prevent sunburn and improve fruit quality of ‘Jonagold’ apples. HortScience 31(5), 802-804. Doi: https://doi.org/10.21273/HORTSCI.31.5.802
  76. Park, Y., M. Kim, S.K. Yun, S.S. Kim, and J. Joa. 2022. A simple model for predicting sunburn on Satsuma mandarin fruit. Sci. Hortic. 292, 110658. Doi: https://doi.org/10.1016/j.scienta.2021.110658
  77. Parkhe, S.R., M.H. Dahale, D.H. Paithankar, P.K. Nagre, and Y.V. Ingle. 2022. Study of chemical substances on preventing sunburn injury of mandarin. Pharma Innov. J. 11(2), 751-755.
  78. Rachappanavar, V., A. Padiyal, J.K. Sharma, and S.K. Gupta. 2022. Plant hormone-mediated stress regulation responses in fruit crops - a review. Sci. Hortic. 304, 111302. Doi: https://doi.org/10.1016/j.scienta.2022.111302
  79. Racsko, J. and L.E. Schrader. 2012. Sunburn of apple fruit: Historical background, recent advances and future perspectives. Crit. Rev. Plant Sci. 31, 455-504.
  80. Racskó, J., T. Szabó, J. Nyéki, M. Soltész, P.T. Nagy, D.D. Miller, and Z. Szabó. 2010. Characterization of sunburn damage to apple fruits and leaves. Int. J. Hort. Sci. 16(4), 15-20. Doi: https://doi.org/10.31421/IJHS/16/4/909
  81. Raffo, M.D., A. Cortona, M. Curetti, F. Menni, and V. De Angelis. 2015. Empleo de mallas antigranizo para el control del asoleado en manzanas (Malus domestica Borkh), en el Alto Valle de Río Negro. Hortic. Arg. 34(83), 20-30.
  82. Ramírez-Gil, J.G. and J.G. Morales. 2019. Polyphasic identification of preharvest pathologies and disorders in avocado cv. Hass. Agron. Colomb. 37(3), 213-227. Doi: https://doi.org/10.15446/agron.colomb.v37n3.78528
  83. Rao, M.J., L. Wang, U. Ahmad, M.H. Ahmad, and S. Hussain. 2022. Citrus metabolic and antioxidant responses to high light stress. In: Sajjad, H., M.F. Khalid, M.A. Ali, N. Ahmed, M. Hasanuzzaman, and S. Ahmad (eds.). Citrus production - Technological advancements and adaptation to changing climate. CRC Press, Boca Raton, FL. https://doi.org/10.1201/9781003119852
  84. Rehman, M.U., G.H. Rather, Y. Gull, M.R. Mir, M.M. Mir, U.I. Waida, and K.R. Hakeem. 2015. Effect of climate change on horticultural crops. In: Hakeem K.R. (ed.). Crop production and global environmental issues. Springer International Publishing Switzerland. Doi: https://doi.org/10.1007/978-3-319-23162-4_9
  85. Restrepo-Díaz, H. and A.D. Sánchez-Reinoso. 2020. Ecophysiology of fruit crops: A glance at its impact on fruit crop productivity. pp. 59-66. In: Srivastava, A.K. and C. Hu (eds.). Fruit crops: Diagnosis and management of nutrient constraints, Elsevier. Doi: https://doi.org/10.1016/B978-0-12-818732-6.00005-8
  86. Reyes, C. 2012. Papaya (Carica papaya L.). pp. 755-775. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  87. Rodriguez, J., A. Anoruo, J. Jifon, and C. Simpson. 2019. Physiological effects of exogenously applied reflectants and anti-transpirants on leaf temperature and fruit sunburn in Citrus. Plants 8, 549. Doi: https://doi.org/10.3390/plants8120549
  88. Sánchez-Reinoso, A.D., Y. Jiménez-Pulido, J.P. Martínez-Pérez, C.S. Pinilla, and G. Fischer. 2019. Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Rev. Colomb. Cienc. Hortic. 13(3), 325-335. Doi: https://doi.org/10.17584/rcch.2019v13i3.100171
  89. Santosh, D.T., K.N. Tiwari, and R.G. Reddy. 2017. Banana bunch covers for quality banana production - a review. Int. J. Curr. Microbiol. Appl. Sci. 6, 1275-1291. Doi: https://doi.org/10.20546/ijcmas.2017.607.155
  90. Saric, S. and R.K. Sivamani. 2016. Polyphenols and sunburn. Int. J. Mol. Sci. 17, 1521. Doi: https://doi.org/10.3390/ijms17091521
  91. Schaffer, B. and A.W. Whiley. 2003. Environmental regulation of photosynthesis in avocado trees – a mini-review. pp. 335-342. Proc. V World Avocado Congr.
  92. Schrader, L.E. 2011. Scientific basis of a unique formulation for reducing sunburn of fruits. HortScience 46(1), 6-11. Doi: https://doi.org/10.21273/HORTSCI.46.1.6
  93. Schrader, L.E., D.A. Felicetti, J. Sun, J.-Z. Xu, J.-G. Zhang, and C.B. Kahn. 2008. Effects of high temperature and high solar irradiance on sunburn fruit quality, and skin pigments of apple. Acta Hortic. 903, 1025-1039. Doi: https://doi.org/10.17660/ActaHortic.2011.903.144
  94. Shaban, A.E.A., M.I.M. El-Banna, and A.A. Rashedy. 2021. Mitigation of excessive solar radiation and water stress on ‘Keitt’ mango Mangifera indica trees through shading. Acta Sci. Pol. Hortorum Cultus 20(4), 77-88. Doi: https://doi.org/10.24326/asphc.2021.4.7
  95. Sharma, R.R., S.V.R. Reddy, and M.J. Jhalegar. 2014. Pre-harvest fruit bagging: A useful approach for plant protection and improved post-harvest fruit quality - A review. J. Hortic. Sci. Biotechnol. 89, 101-113. Doi: https://doi.org/10.1080/14620316.2014.11513055
  96. Stuckens, J., S. Dzikiti, W.W. Verstraeten, S. Verreynne, R. Swennen, and P. Coppin. 2011. Physiological interpretation of a hyperspectral time series in a citrus orchard. Agric. For. Meteorol. 151, 1002-1015. Doi: https://doi.org/10.1016/j.agrformet.2011.03.006
  97. Sun, Y.J., Y.L. Gao, H. Wang, X.H. Yang, H. Zhai, and Y.P. Du. 2018. Stimulation of cyclic electron flow around PSI as a response to the combined stress of high light and high temperature in grape leaves. Funct. Plant Biol. 45, 1038-1045. Doi: https://doi.org/10.1071/FP17269
  98. Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed, Porto Alegre, Brazil.
  99. Teixeira, G.C.M., J.S.P. Junior, B.-H. Mattiuz, R.M. Prado, A.J. Corea, A.M.S. Rocha, and D.W. Valec. 2022. Spraying of calcium carbonate nanoparticles on pineapple fruit reduces sunburn damage. South Afr. J. Bot. 148, 643-651. Doi: https://doi.org/10.1016/j.sajb.2022.04.004
  100. Thorpe, M.R. 1974. Radiant heating of apples. J. Appl. Ecol. 11, 755-760. Doi: https://doi.org/10.2307/2402224
  101. Tinyane, P.P., P. Soundy, and D. Sivakumar. 2018. Growing ‘Hass’ avocado fruit under different coloured shade netting improves the marketable yield and affects fruit ripening. Sci. Hortic. 230, 43-49. Doi: https://doi.org/10.1016/j.scienta.2017.11.020
  102. Tsai, M.-S., T.-C. Lee, and P.-T. Chang. 2013. Comparison of paper bags, calcium carbonate, and shade nets for sunscald protection in ‘Murcott’ tangor fruit. HortTechnol. 23(5), 659-667. Doi: https://doi.org/10.21273/HORTTECH.23.5.659
  103. Wahid, A., S. Gelani, M. Ashraf, and M.R. Foolad. 2007. Heat tolerance in plants: An overview. Environ. Exp. Bot. 61, 199-223. Doi: https://doi.org/10.1016/j.envexpbot.2007.05.011
  104. Woolf, A.B. and I.B. Ferguson. 2000. Postharvest responses to high fruit temperatures in the field. Postharvest Biol. Technol. 21, 7-20. Doi: https://doi.org/10.1016/S0925-5214(00)00161-7
  105. Wolstenholme, B.N. 2007. Ecología: El clima y el ambiente edáfico. pp. 75-101. In: El palto. Botánica, producción y usos. Ediciones Universitarias de Valparaíso, Valparaiso, Chile.
  106. Yin, L.H., Y.J. Zou, X.W. Ke, D. Liang, X. Du, Y.Y. Zhao, Q.Q. Zhang, and F.W. Ma. 2013. Phenolic responses of resistant and susceptible Malus plants induced by diplocarpon mali. Sci. Hortic. 164, 17-23. Doi: https://doi.org/10.1016/j.scienta.2013.08.037
  107. Yohannes, H. 2016. A review on relationship between climate change and agriculture. J. Earth Sci. Clim. Change 7(2), 335. Doi: https://doi.org/10.4172/2157-7617.1000335
  108. Zhang, J.L., J.P. Niu, Y. Duan, M.X. Zhang, J.Y. Liu, P.M. Li, and F.W. Ma. 2015. Photoprotection mechanism in the ‘Fuji’ apple peel at different levels of photooxidative sunburn. Physiol. Plant. 2015, 154, 54-65. Doi: https://doi.org/10.1111/ppl.12272
  109. Zhang, C., H. Yi, X. Gao, T. Bai, Z. Ni, Y. Chen, M. Wang, Y. Zhang, J. Pan, W. Yu, and D. Xie. 2022. Effect of different altitudes on morpho-physiological attributes associated with mango quality. Diversity 14, 876. Doi: https://doi.org/10.3390/d14100876
  110. Zhao, W., W. Yang, Z. Ma, X. Zhang, L. Cha, S. Liu, and Y. Zhang. 2020. Effects of time and height of shading on yield and quality of Pineapple. IOP Conf. Ser.: Earth Environ. Sci. 512, 012101. Doi: https://doi.org/10.1088/1755-1315/512/1/012101

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 5 6 > >> 

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.