Skip to main navigation menu Skip to main content Skip to site footer

Macronutrient absorption curves of carrot in the high tropics

Carrot Cordoba F1 hybrid. Photo: P.A. Serrano-Cely

Abstract

Carrot cultivation in Colombia reached 9,000 hectares in 2020. The production chain of this crop faces various problems, among which marketing and nutrition stand out, the latter a decisive factor for performance. Some studies claim that with the use of hybrids in combination with irrigation and balanced fertilization, yields greater than 70 t ha-1 can be obtained. The commercial competitiveness of crops is related to the timely, adequate and efficient application of nutrients; element absorption curves are tools that offer effective information on how much the crop assimilates during its phenological cycle, allowing us to know the minimum required amount of elements for the specific area. A carrot crop was established to determine the foliar absorption curves of macronutrients (N, P, K, Mg and Ca). The yield obtained was 39.6 t ha-1, with 552,500 plants/ha. K was the element with the highest absorption 147 days after sowing with 29.36 kg ha-1 for the leaves and 27.74 kg ha-1 in the root and a total of 57.1 kg ha-1. The order of the other elements was N, Ca, P and Mg. This information is useful for managing carrot nutrition in order to make fertilizer management efficient and improve yield.

Keywords

Nutritional status, Plant requirements, Root vegetables, Daucus carota L.

PDF

References

  1. Agbede, T.M. 2021. Effect of tillage, biochar, poultry manure and NPK 15-15-15 fertilizer, and their mixture on soil properties, growth and carrot (Daucus carota L.) yield under tropical conditions. Heliyon 7, e07391. Doi: https://doi.org/10.1016/j.heliyon.2021.e07391
  2. Agronet. 2022. Área, producción y rendimiento nacional por cultivo: zanahoria (database). In: https://agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; consulted: May, 2023.
  3. Avitia García, E., J. Pineda Pineda, A.M. Castillo González, L.I. Trejo Téllez, T. Corona Torres, and E. Cervantes Urbán. 2014. Extracción nutrimental en fresa (Fragaria x ananassa Duch.). Rev. Mex. Cienc. Agric. 5, 519-524. Doi: https://doi.org/10.29312/remexca.v5i3.955
  4. Barahona, L.A., J.E. Villarreal, W. González, and E.I. Quiro. 2019. Absorption of nutrients in rice in an inceptisol soil under irrigation in Coclé, Panamá. Agron. Mesoam. 30(2), 407-424. Doi: https://doi.org/10.15517/am.v30i2.33997
  5. Bodeker, G., M. Katurji, A. McDonald, O. Morgenstern, D. Noone, J. Renwick, and A. Tait. 2022. Aotearoa New Zealand climate change projections guidance: interpreting the latest IPCC WG1 report findings. Report CR 501. New Zealand Ministry for the Environment, Wellington.
  6. Chica, F. and J. Garzón. 2018. Absorption curves - mineral-extraction under an aeroponic system for white chrysanthemum (Dendranthema grandiflorum). Acta Agron. 67, 86-93. Doi: https://doi.org/https://doi.org/10.15446/acag.v67n1.57988
  7. Cooper, M., S.S. Castro, and M.R. Coelho. 2017. Micromorfologia do solo. pp. 527-564. In: Teixeira, P. C., G.K. Donagemma, A. Fontana, and W.G. Teixeira (eds.). Manual de métodos de análise de solo. 3th ed. Embrapa, Brasilia.
  8. Delgado, J., J.C. Menjivar, M. Sánchez, and C. Bonilla. 2012. Efecto de la fertilización en la producción de materia seca y extracción de nutrientes en tres accesiones de Lippia origanoides H.B.K. Acta Agron. 61(4), 331-338.
  9. FAO. 2022. FAOSTAT: crops and livestock products - carrot (database). In: https://www.fao.org/faostat/es/#data/QCL; consulted: May, 2023.
  10. Fidalski, J. and C.A. Tormena. 2022. Physical quality of sandy soils under orange orchards in Southern Brazil. Rev. Bras. Cienc. Solo, 46, e0220006. Doi: https://doi.org/10.36783/18069657rbcs20220006
  11. Geisseler, D., R.S. Ortiz, and J. Diaz. 2022. Nitrogen nutrition and fertilization of onions (Allium cepa L.)–a literature review. Sci. Hort. 291. Doi: https://doi.org/10.1016/j.scienta.2021.110591
  12. Geoffriau, E. and P. Simon. 2020. Carrots and related apiaceae crops. 2nd ed. CABI, London.
  13. Godwin, A., C. Mcgill, A. Ward, S. Sofkova-Bobcheva, and S. Pieralli. 2023. Science of the total environment phenological phase affects carrot seed production sensitivity to climate change – a panel data analysis. Sci. Total Environ. 892, 164502. Doi: https://doi.org/10.1016/j.scitotenv.2023.164502
  14. González, F., M. Cabezas, M. Ramírez, and D. Ramírez. 2018. Curvas de absorción de macronutrientes en tres variedades de caña de azúcar (Saccharum officinarum L.) para panela, en la Hoya del Río Suárez. Rev. U.D.C.A Act. Div. Cient. 21(2), 395-404.
  15. Hlaváčiková, H., L. Holko, M. Danko, and V. Novák. 2019. Estimation of macropore flow characteristics in stony soils of a small mountain catchment. J. Hydrol. 574, 1176-1187. Doi: https://doi.org/10.1016/j.jhydrol.2019.05.009
  16. Hochmuth, R.C., M. Burani-Arouca, and C.E. Barrett. 2021. Yield and quality of carrot cultivars with eight nitrogen rates and best management practices. HortScience 56(10), 1199. Doi: https://doi.org/10.21273/HORTSCI15983-21
  17. Hoyos, V., S. Magnitskiy, and P. Guido. 2015. Effect of fertilization on the contents of macronutrients and chlorine in tobacco leaves cv. flue-cured (Nicotiana tabacum L.) in two municipalities in Huila, Colombia. Agron. Colomb. 1(2), 174-183. Doi: https://doi.org/10.15446/agron.colomb.v33n2.46839
  18. Kopsell, D.A. and D.E. Kopsell. 2006. Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends Plant Sci. 11(10), 499-507. Doi: https://doi.org/10.1016/j.tplants.2006.08.006
  19. Mazurana, M., R. Levien, A.V.I. Junior, O. Conte, L.A. Bressani, and J. Müller. 2017. Susceptibilidade do solo à compactação sob condições de uso no sul do Brasil. Cienc. Agrotecnol. 41(1), 60-71. Doi: https://doi.org/10.1590/1413-70542017411027216
  20. Mendoza, J., A. Cecilio, L. Costa, and F. Tavares. 2014. Crecimiento, acumulación de macronutrientes y producción de melón cantaloupo y amarillo. Rev. Caatinga 27(3), 72-82.
  21. Menezes, J., A. Goncalvez, and C. Kurtz. 2013. Biomassa e extração de nutrientes da cebola sob adubação orgânica e biofertilizantes. Hortic. Bras. 31, 642-648. Doi: https://doi.org/10.1590/S0102-05362013000400022
  22. Montazar, A., D. Geisseler, and M. Cahn. 2021. Spatial variability of nitrogen uptake and net removal and actual evapotranspiration in the california desert carrot production system. Agriculture 11(8), 11080752. Doi: https://doi.org/10.3390/agriculture11080752
  23. Moraes, M.T., A.G. Bengough, H. Debiasi, J.C. Franchini, R. Levien, A. Schnepf, and D. Leitner. 2018. Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil. Plant Soil 428(1-2), 67-92. Doi: https://doi.org/10.1007/s11104-018-3656-z
  24. Pedraza, R. and M. Henao. 2008. Composición del tejido vegetal y su relación con variables de crecimiento y niveles de nutrientes en el suelo en cultivos comerciales de menta (Mentha spicata L.). Agron. Colomb. 26(2), 186-196.
  25. Quesada, G. and F. Bertsch. 2013. del híbrido de tomate FB-17. Terra Latinoam. 31, 1-7.
  26. Reid, J.B. and J.M. English. 2000. Potential yield in carrots (Daucus carota L.): theory, test, and an application. Ann. Bot. 85(5), 593-605. Doi: https://doi.org/10.1006/anbo.2000.1108
  27. Reid, J.B. and R.N. Gillespie. 2017. Yield and quality responses of carrots (Daucus carota L.) to water deficits. NZ J. Crop Hortic. Sci. 45(4), 299-312. Doi: https://doi.org/10.1080/01140671.2017.1343739
  28. Reid, J.B., A.G. Hunt, P.R. Johnstone, B.P. Searle, and L.K. Jesson. 2018. On the responses of carrots (Daucus carota L.) to nitrogen supply. NZ J. Crop Hort. Sci. 46(4), 298-318. Doi: https://doi.org/10.1080/01140671.2017.1402790
  29. Sánchez-Reinoso, A.D., Y. Jiménez-Pulido, J.P. Martínez-Pérez, C.S. Pinilla, and G. Fischer. 2019. Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Rev. Colomb. Cienc. Hortic. 13(3), 325-335. Doi: https://doi.org/10.17584/rcch.2019v13i3.100171
  30. Smoleń, S. and W. Sady. 2009. The effect of various nitrogen fertilization and foliar nutrition regimes on the concentrations of nitrates, ammonium ions, dry matter and N-total in carrot (Daucus carota L.) roots. Sci. Hortic. 119(3), 219-231. https://doi.org/10.1016/j.scienta.2008.07.030
  31. Sosa, A., G. Ruiz, I. Bazante, A. Mendoza, J.D. Etchevers, J. Padilla, and J. Castellanos. 2013. Absorción de nitrógeno, fosforo y potasio en zanahoria cultivada en el Bajío de México. Inf. Agron. Hispanoam. 11, 27-30.
  32. Torres, J. and C. Suarez. 2014. Nutrient uptake of the criolla potato (Solanum phureja var . Galeras) for the determination of critical nutritional levels. Agron. Colomb. 32(1), 59-69. Doi: https://doi.org/10.15446/agron.colomb.v32n1.41811
  33. Vega, T., S. Méndez, and W. Rodríguez. 2012. Análisis del crecimiento de cinco híbridos de zanahoria (Daucus carota L.) mediante la metodología del análisis funcional. Agron. Costar. 36, 29-46.
  34. Westerveld, S.M., A.W. McKeown, and M.R. McDonald. 2006a. Distribution of nitrogen uptake, fibrous roots and nitrogen in the soil profile for fresh-market and processing carrot cultivars. Can. J. Plant Sci. 86(4), 1227-1237. Doi: https://doi.org/10.4141/P05-239
  35. Westerveld, S.M., A.W. McKeown, and M.R. McDonald. 2006b. Seasonal nitrogen partitioning and nitrogen uptake of carrots as affected by nitrogen application in a mineral and an organic soil. HortScience 41(5), 1332-1338. Doi: https://doi.org/10.21273/hortsci.41.5.1332
  36. Westerveld, S.M., M.R. McDonald, and A.W. McKeown. 2007. Nitrogen utilization timeline of carrot over the growing season. Can. J. Plant Sci. 87(3), 587-592. https://doi.org/10.4141/P06-159

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.