Skip to main navigation menu Skip to main content Skip to site footer

A comparison of direct and indirect methods for estimating leaf area in peach (<i>Prunus persica</i>) and plum (<i>Prunus salicina</i>) cultivars

Abstract

Leaf area is a widely used parameter in the study of crop ecophysiology because of its direct implications on fruit production. Different destructive, non-destructive or indirect methods are used for its determination. The estimation of the leaf area is an important biometric observation that must be made when comparing the behavior of plants in response to different agricultural treatments. The objective of the study was to determine and validate the most accurate regression functions for non-destructive estimation of leaf area in some cultivars of peach and plum. In this work, mathematical functions were applied to estimate leaf area in the plum cultivars Gold Fruly, Ecuatoriano, Methley and Horvin, and in the peach cultivars Dorado, Rubidoux, Diamante and Rey Negro. The leaves were collected from trees grown in Paipa, Colombia. A regression function was selected for each cultivar and the estimated leaf area data was compared with the functions and data measured with a leaf area integrated analyzer. The product for the length by the width of the leaf was used as independent variable (X) of the function. In all cases, the Pearson correlation coefficient presented values higher than 0.9, indicating the close relationship between the estimated and observed data. With the use of these functions, it is possible to non-destructively estimate the leaf area in the peach and plum cultivars involved in the study.

Keywords

deciduous crops, regression analysis, leaf length, leaf width

PDF (Español)

References

  1. Agronet. 2017. Estadísticas. En: Agrícola. Área, producción, rendimiento, participación. http://www.agronet.gov.co
  2. Arriaza, M. 2006. Guía práctica de análisis de datos. Junta de Andalucía, Granada, España.
  3. Blanco, F.F. y M.V. Folegatti. 2005. Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Sci. Agric. 62(4), 305-309. Doi: 10.1590/S0103-90162005000400001
  4. Cabezas-Gutiérrez, M., F. Peña, H.W. Duarte, J.F. Colorado y R. Lora. 2009. Un modelo para la estimación del área foliar en tres especies forestales de forma no destructiva. Rev. UDCA Act. Divulg. Cient. 12 (1), 121-130.
  5. Casierra-Posada, F., G.R. Peña y J.E. Peña-Olmos. 2007. Estimación indirecta del área foliar en Fragaria vesca L., Physalis peruviana L., Acca sellowiana (Berg.) Burret, Rubus glaucus L., Passiflora mollissima (Kunth) L.H. Bailey y Ficus carica L. Rev. UDCA Act. Divulg. Cient. 11 (1), 95-102.
  6. Cope, J.S., D. Corney , J.Y. Corney , J.Y. Clark , P. Remagnino y P. Wilkin. 2012. Plant species identification using digital morphomentrics: a review. Expert Syst. Appl. 39, 7562-7573. Doi: 10.1016/j.ins.2016.09.023
  7. Cristofori, V., Y. Rouphael, E. Mendoza-de Gyves y C. Bignami. 2007. A simple model for estimating leaf area of hazelnut from linear measurements. Sci. Hortic. 113, 221-225. Doi: 10.1016/j.scienta.2007.02.006
  8. Fischer, G., F. Casierra-Posada y C. Villamizar. 2010. Producción forzada de duraznero (Prunus persica (L.) Batsch) en el altiplano tropical de Boyacá (Colombia). Rev. Colomb. Cienc. Hortíc. 4(1), 19-32. Doi: 10.17584/rcch.2010v4i1.1223
  9. Hunt, R. 1990. Basic growth analysis: Plant growth analysis for beginners. Unwin Hyman, Boston, MA.
  10. Kandiannan, K., U. Parthasarathy, K.S. Krishnamurthy, C.K. Thankamani y V. Srinivasan. 2009. Modeling individual leaf area of ginger Zingiber officinale Roscoe) using leaf length and width. Sci. Hortic. 120, 532-537. Doi: 10.1016/j.scienta.2008.11.037
  11. Kumar, R. 2009. Calibration and validation of regression model for non-destructive leaf area estimation of saffron (Crocus sativus L.). Sci. Hortic. 122, 142-145. Doi: 10.1016/j.scienta.2009.03.019
  12. Keramatlou, I., M. Sharifani, H. Sabouri, M. Alizadeh y B. Kamkar. 2015. A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.). Sci. Hortic. 184, 36-39. Doi: 10.1016/j.scienta.2014.12.017
  13. Morillo, A.C., Y. Morillo, L. González e I. Aidel. 2015. Variabilidad interespecífica de duraznos (Prunus persica L. Batsch.) y ciruelos (Prunus domestica) usando RAMs. Rev. Colomb. Biotecnol. 17(1), 61-69. Doi: 10.15446/rev.colomb.biote.v17n1.44644
  14. Neto, J.C., G.E. Meyer, D.D. Jones y A.K. Samal. 2006. Plant species identification using Elliptic Fourier leaf shape analysis. Comp. Electron. Agric. 50(2), 121-134. Doi: 10.1016/j.compag.2005.09.004
  15. Patiño, L. y D. Miranda. 2013. Situación actual de los frutales caducifolios en el mundo y en Colombia. pp. 9-20. En: Miranda, D., G. Fischer y C. Carranza (eds.). Los frutales caducifolios en Colombia. Situación actual, sistemas de cultivo y plan de desarrollo. Sociedad Colombiana de Ciencias Hortícolas, Bogotá, Colombia.
  16. Peksen, E. 2007. Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Sci. Hortic. 113, 322-328. Doi: 10.1016/j.scienta.2007.04.003
  17. Pompelli, M.F., W.C. Antunes, D.T.R.G. Ferreira, P.G.S. Cavalcante, P.G.S. Cavalcante y L. Endres. 2012. Allometric models for non-destructive leaf area estimation of Jatropha curcas. Biomass Bioenergy 36, 77-85. Doi: 10.1016/j.biombioe.2011.10.010
  18. Serdar, Ü. y H. Demirsoy. 2006. Non-destructive leaf area estimation in chestnut. Sci. Hortic. 108, 227-230. Doi: 10.1016/j.scienta.2006.01.025
  19. Zhang, X.L., S. Madi, L. Borsuk, D. Nettleton, R.J. Elshire, B. Buckner, D. JanickBuckner, J. Beck, M. Timmermans, P.S. Schnable y M.J. Scanlon. 2007. Laser microdissection of narrow sheath mutant maize uncovers novel gene expression in the shoot apical meristem. PLOS Genet. 3(6), e101. Doi: 10.1371/journal.pgen.0030101

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.