Skip to main navigation menu Skip to main content Skip to site footer

Evaluation of the effect of biostimulant substances on the growth and physiological response of Dominico-Hartón plantain (Musa AAB)

Plantain Dominico-Hartón in nursery stage. Photo: D.A. Cruz-Lara

Abstract

The physiological quality of plantain plants (Musa AAB) is an important attribute to enhance multiplication efficiency and the adaptation of plant material to field conditions. The effect of applying biostimulant substances on the growth and physiological response of plantain vitroplants in the nursery was evaluated. The trial was conducted under a completely randomized block design in four municipalities of the Department of Huila, Colombia. The evaluated treatments were Trichoderma koningiosis (Tk), Bacillus amyloliquefaciens (Ba), humic extract + fulvic acids + free amino acids (Eh+Af+Al), chitosan (Qt), Bacillus subtilis (Bs), silicon dioxide (Ds), salicylic acid (As), and water control (T). Plant height, pseudostem diameter, total leaves, functional leaves, dry biomass of leaves, pseudostem, corm, and root, as well as photosynthesis (A), stomatal conductance (Gs), transpiration (Tr), and chlorophyll index (CI) were evaluated at 90 days after planting. Improvements in the physiological response of treated plants compared to the control were evident; notably, Tk significantly enhanced gas exchange, with increases in Gs, Tr, and CI. A differential effect of the biostimulants by locality in treated plants was observed, due to the significant increase in leaf dry matter with Qt, As, Eh+Af+Al, and Ds and in plant height with treatments Qt, As, and Tk. These results demonstrate the advantages of using biostimulants to promote the growth and physiological quality of plantain plants in the nursery stage.

Keywords

Musaceae, Gas exchange, Development, Biomass, Plant nurseries

PDF

References

  1. ¡Betancourt, M., J. Cárdenas, and G.A. Rodríguez. 2021. Guía para importar a Colombia germoplasma y material de propagación de plátano y banano en el marco de la emergencia sanitaria por Foc R4T en Colombia. Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Mosquera, Colombia. Doi: https://doi.org/10.21930/agrosavia.manual.7404753
  2. Bishnoi, A., P. Jangir, P.K. Shekhawat, P.K., H. Ram, and P. Soni. 2023. Silicon supplementation as a promising approach to induce thermotolerance in plants: current understanding and future perspectives. J. Soil Sci. Plant Nutr. 23, 34-55. Doi: https://doi.org/10.1007/s42729-022-00914-9
  3. Chakraborty, M., M. Hasanuzzaman, M. Rahman, M.A.R. Khan, P. Bhowmik, N.U. Mahmud, M. Tanveer, and T. Islam. 2020. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture 10(12), 624. Doi: https://doi.org/10.3390/agriculture10120624
  4. Dame, Z.T., M. Rahman, and T. Islam. 2021. Bacilli as sources of agrobiotechnology: recent advances and future directions. Green Chem. Lett. Rev. 14(2), 246-271. Doi: https://doi.org/10.1080/17518253.2021.1905080
  5. Distefano, M., C.B. Steingass, C. Leonardi, F. Giuffrida, R. Schweiggert, and R.P. Mauro. 2022. Effects of a plant-derived biostimulant application on quality and functional traits of greenhouse cherry tomato cultivars. Food Res. Int. 157, 111218. Doi: https://doi.org/10.1016/j.foodres.2022.111218
  6. Dubey, S.C. and K. Sharma. 2023 Biostimulant: an innovative approach for sustainable crop production. Current Sci. 125(4), 377-382.
  7. Etesami, H. and B.R. Glick. 2024. Bacterial indole-3-acetic acid: a key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol. Res. 281, 127602. Doi: https://doi.org/10.1016/j.micres.2024.127602
  8. Fedearroz, Federación Nacional de Arroceros Colombia. 2024. Portal agroclimático. In: https://clima.fedearroz.com.co/; consulted: January, 2024.
  9. Hilje, L. and H. Jiménez-Saa. 2017. Leslie R. Holdridge: un botánico que vio muy lejos. Rev. Cienc. Ambient. 51(2), 181-194. Doi: https://doi.org/10.15359/rca.51-2.10
  10. Ideam, Instituto de Hidrología, Meteorología y Estudios Ambientales Colombia. 2024. Sistema de Información para la gestión de datos Hidrológicos y Meteorológicos – DHIME: datos hidrológicos y meteorológicos. In: http://www.dhime.ideam.gov.co/webgis/home/; consulted: January, 2024.
  11. Kaya, C., F. Ugurlar, M. Ashraf, and P. Ahmad. 2023. Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. Plant Physiol. Biochem. 196, 431-443. Doi: https://doi.org/10.1016/j.plaphy.2023.02.006
  12. Khalil, M.I.I. and S.A. Youssef. 2024. Physiological and biochemical responses of Alternaria alternata infected tomato to Trichoderma harzianum and Chaetomium globosum application. S. Afr. J. Bot. 166, 116-125. Doi: https://doi.org/10.1016/j.sajb.2024.01.020
  13. Khan, N., A. Bano, S. Ali, and M.A. Babar. 2020. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Reg. 90(2), 189-203. Doi: https://doi.org/10.1007/s10725-020-00571-x
  14. Keswani, C., S.P. Singh, L. Cueto, C. García-Estrada, S. Mezaache-Aichour, T.R. Glare, R. Borriss, S.P. Singh, M.A. Blázquez, and E. Sansinenea. 2020. Auxins of microbial origin and their use in agricultura. Appl. Microbiol. Biotechnol. 104, 8549-8565. Doi: https://doi.org/10.1007/s00253-020-10890-8
  15. Loranger-Merciris, G., G. Damour, B. Deloné-Louis Jeune, H. Ozier-Lafontaine, M. Dorel, J. Sierra, J.-L. Diman, and P. Lavelle. 2023. Management practices and incidence of pests in plantain (Musa paradisiaca AAB) crops. Consequences on the sustainability of the cropping systems. Appl. Soil Ecol. 189, 104904. Doi: https://doi.org/10.1016/j.apsoil.2023.104904
  16. Mandal, S., U. Anand, J. López-Bucio, Radha, M. Kumar, M.K. Lal, R.K. Tiwari, and A. Dey. 2023. Biostimulants and environmental stress mitigation in crops: a novel and emerging approach for agricultural sustainability under climate change. Environ. Res. 233, 116357. Doi: https://doi.org/10.1016/j.envres.2023.116357
  17. Martínez, G., J.C. Rey, R. Pargas, C. Guerra, E. Manzanilla, and H. Ramírez. 2021. Efecto de sustratos y fuentes orgánicas en la propagación de banano y plátano. Agron. Mesoam. 32(3), 808-822. Doi: https://doi.org/10.15517/am.v32i3.42490
  18. Mateus-Cagua, D.M., A. González-Almario, M. Betancourt-Vasquez, and G.A. Rodriguez-Izquierdo. 2024. Physiological response induced by biostimulants on plantain plants (Musa AAB) under Ralstonia solanacearum race 2 stress. Rev. Ceres 71, e71019. Doi: https://doi.org/10.1590/0034-737x2024710019
  19. Mateus-Cagua, D. and G. Rodríguez-Yzquierdo. 2019. Effect of biostimulants on dry matter accumulation and gas exchange in plantain plants (Musa AAB). Rev. Colomb. Cienc. Hortic. 13(2), 151-160. Doi: https://doi.org/10.17584/rcch.2019v13i2.8460
  20. Mendez-Adorno, J.M., S. Salgado-García, L.C. Lagunes-Espinoza, J.R.H. Mendoza-Hernández, M. Castelán-Estrada, S. Cordova-Sanchez, and C.I. Hidalgo-Moreno. 2016. Relación entre parámetros fisiológicos en caña de azúcar (Saccharum spp.) bajo suspensión de riego previo a la cosecha. Agroproductividad 9(3), 15-20.
  21. Nephali, L., L.A. Piater, I.A. Dubery, V. Patterson, J. Huyser, K. Burgess, and F. Tugizimana. 2020. Biostimulants for plant growth and mitigation of abiotic stresses: a metabolomics perspective. Metabolites 10(12), 505. Doi: https://doi.org/10.3390/metabo10120505
  22. Ospina-Salazar, D.I., J.A. Benavides-Bolaños, O. Zúñiga-Escobar, and C.G. Muñoz-Perea. 2018. Photosynthesis and biomass yield in Tabasco pepper, radish and maize subjected to magnetically treated water. Corpoica Cienc. Tecnol. Agropecuaria 19(2), 307-321. Doi: https://doi.org/10.21930/rcta.vol19_num2_art:537
  23. Polanco, E., D.A. Cruz, J.E. Muñoz, M. Betancourt, and G.A. Rodríguez. 2024. Producción de semilla de plátano de calidad Dominico-Hartón en el departamento del Huila. Corporación Colombiana de Investigación Agropecuaria – Agrosavia, Mosquera, Colombia. Doi: https://doi.org/10.21930/agrosavia.manual.7407129
  24. Rana, V.S., S. Sharma, N. Rana, and U. Sharma. 2022. Sustainable production through biostimulants under fruit orchards. CABI Agric. Biosci. 3, 38. Doi: https://doi.org/10.1186/s43170-022-00102-w
  25. Ramírez-Olvera, S.M., L.I. Trejo-Téllez, F.C. Gómez-Merino, L.M. Ruíz-Posadas, E.G. Alcántar-González, and C. Saucedo-Veloz. 2021. Silicon stimulates plant growth and metabolism in rice plants under conventional and osmotic stress conditions. Plants 10(4), 777. Doi: https://doi.org/10.3390/plants10040777
  26. Raza, T., M. Abbas, Amna S. Imran, M.Y. Khan, A. Rebi, Z. Rafie-Rad, and N.S. Eash. 2023. Impact of silicon on plant nutrition and significance of silicon mobilizing bacteria in agronomic practices. Silicon 15, 3797-3817. Doi: https://doi.org/10.1007/s12633-023-02302-z
  27. Restrepo-Díaz, H. and A.D. Sánchez-Reinoso. 2020. Ecophysiology of fruit crops: a glance at its impact on fruit crop productivity. pp. 59-66. In: Srivastava, A.K. and C. Hu (eds.). Fruit crops: diagnosis and management of nutrient constraints. Elsevier, Amsterdam. Doi: https://doi.org/10.1016/B978-0-12-818732-6.00005-8
  28. Rizzardi, M.A., N.G. Fleck, R.A. Vidal, A. Merotto Jr., and D. Agostinetto. 2001. Competição por recursos do solo entre ervas daninhas e culturas. Cienc. Rural 31(4), 707-714. Doi: https://doi.org/10.1590/S0103-84782001000400026
  29. Rodríguez-García, D. and J. Vargas-Rojas. 2022. Efecto de la inoculación con Trichoderma sobre el crecimiento vegetativo del tomate (Solanum lycopersicum). Agron. Costarr. 46(2), 47-60. Doi: https://doi.org/10.15517/rac.v46i2.52045
  30. Stasińska-Jakubas, M. and B. Hawrylak-Nowak. 2022. Protective, biostimulating, and eliciting effects of chitosan and its derivatives on crop plants. Molecules 27(9), 2801. Doi: https://doi.org/10.3390/molecules27092801
  31. UPRA, Unidad de Planificación Rural Agropecuaria Colombia. 2023. Resultados preliminares evaluaciones agropecuarias, diciembre de 2023. Evaluaciones agropecuarias municipales. Bogota.
  32. Ugarte-Barco, F.A., I.A. Zhiñin-Huachun, and R. Hernández-Pérez. 2022. Influencia de bioestimulantes sobre caracteres morfológicos y agroquímicos del banano (Musa AAA cv. Williams). Terra Latinoam. 40, e1456. Doi: https://doi.org/10.28940/terra.v40i0.1456
  33. Vasconcelos, A.C.F. and L.H.G. Chaves. 2020. Biostimulants and their role in improving plant growth under abiotic stresses. In: Mirmajlessi, S.M. and R. Radhakrishnan (eds.). Biostimulants in plant science. IntechOpen. Doi: https://doi.org/10.5772/intechopen.88829
  34. Wagner-Medina, E.V., J.A. Valencia, Á. Caicedo, and J.F. Hernández. 2023. Manual técnico para producir semilla asexual de calidad de plátano cv. Dominico Hartón por macropropagación. Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Mosquera, Colombia. Doi: https://doi.org/10.21930/agrosavia.manual.7406139
  35. Yasmeen, R. and Z.S. Siddiqui. 2017. Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Bot. Croat. 76(2), 154-162.

Downloads

Download data is not yet available.

Most read articles by the same author(s)