Skip to main navigation menu Skip to main content Skip to site footer

Growth and production of crisp lettuce (Lactuca sativa L.) using different doses of nitrogen and magnesium

Crisp lettuce var. Vera. Photo: A.J. Reyes-Medina

Abstract

Lettuce is part of the group of leafy vegetables that sees high consumption worldwide. However, population increases have forced excessive increases in fertilization, raising N levels both in the water and the soil and leading to serious environmental problems. As a result, appropriate fertilization management must be carried out; therefore, this study aimed to determine the effect of nitrogen and magnesium on the growth and yield of crisp lettuce. A randomized complete block design was carried out with 10 treatments: a control plus nine treatments with a central compound and different combinations of nitrogen and magnesium doses. The variables leaf area ratio, SPAD chlorophyll index and relative growth rate decreased throughout the crop cycle. The application of 150 kg ha-1 of N + 18 kg ha-1 of Mg generated the highest production values and net assimilation rate. The response surface graph yielded a model with a maximum yield of 21 t ha-1 using fertilization with 93.8 kg ha-1 of nitrogen and 12.4 kg ha-1 of magnesium. The lower doses of both nitrogenous and magnesium fertilization showed the highest values of agronomic efficiency and partial productivity.

Keywords

Dry mass, Leaf area, Yield, Agronomic efficiency, Response surface

PDF

References

  • Agronet. 2023. Lechuga: área sembrada y área cultivada del cultivo de lechuga 2007-2016. In: https://www.agronet.gov.co/Documents/LECHUGA2016.pdf; consulted: February, 2023.
  • Chapepa, B., N. Mudada, and R. Mapuranga. 2020. The impact of plant density and spatial arrangement on light interception on cotton crop and seed cotton yield: an overview. J. Cotton Res. 3, 18. Doi: https://doi.org/10.1186/s42397-020-00059-z
  • Chen, Z.C., W.T Peng, J. Li, and H. Liao. 2018. Functional dissection and transport mechanism of magnesium in plants. Semin. Cell Dev. Biol. 74, 142-152. Doi: https://doi.org/10.1016/j.semcdb.2017.08.005
  • Cho, B.H., T.H. Kang, C.S. Han, J.H. Lee, D.I. Lee, and H.K. Noh. 2018. Estimation of lettuce growth characteristics under different LED light intensities in a closed-type plant factory. Hortic. Sci. Technol. 36(3), 350-361. Doi: https://doi.org/10.12972/kjhst.20180034
  • Coulombier, N., E. Nicolau, L. Le Déan, V. Barthelemy, N. Schreiber, P. Brun, N. Lebouvier, and T. Jauffrais. 2020. Effects of nitrogen availability on the antioxidant activity and carotenoid content of the microalgae Nephroselmis sp. Mar. Drugs 18(9), 453. Doi: https://doi.org/10.3390/md18090453
  • El-Nakhel, C., M. Giordano, A. Pannico, P. Carillo, G.M. Fusco, S. De Pascale, and Y. Rouphael. 2019. Cultivar-specific performance and qualitative descriptors for butterhead Salanova lettuce produced in closed soilless cultivation as a candidate salad crop for human life support in space. Life 9(3), 61. https://doi.org/10.3390/life9030061
  • FAO. 2021. FAOSTAT: Lettuce and chicory. In: https://www.fao.org/faostat/en/#search/Lettuce%20and%20chicory; consulted: February, 2023.
  • Frąszczak, B., and M. Kula-Maximenko. 2021. The preferences of different cultivars of lettuce seedlings (Lactuca sativa L.) for the spectral composition of light. Agronomy 11(6), 1211. Doi: https://doi.org/10.3390/agronomy11061211
  • Gong, X., J. Li, H. Ma, G. Chen, K. Dang, P. Yang, M. Wang, and B. Feng. 2020. Nitrogen deficiency induced a decrease in grain yield related to photosynthetic characteristics, carbon-nitrogen balance and nitrogen use efficiency in proso millet (Panicum miliaceum L.). Arch. Agron. Soil Sci. 66(3), 398-413 Doi: https://doi.org/10.1080/03650340.2019.1619077
  • Guelfi-Silva, D.R., G. Marchi, C.R. Spehar, L.R.G Guilherme, and V. Faquin. 2013. Agronomic efficiency of potassium fertilization in lettuce fertilized with alternative nutrient sources. Rev. Ciênc. Agron. 44(2), 267-277. Doi: https://doi.org/10.1590/S1806-66902013000200008
  • Hasnain, M., J. Chen, N. Ahmed, S. Memon, L. Wang, Y. Wang, and P. Wang. 2020. The effects of fertilizer type and application time on soil properties, plant traits, yield and quality of tomato. Sustainability 12(21), 9065. https://doi.org/10.3390/su12219065
  • Hong, J., F. Xu, G. Chen, X. Huang, S. Wang, L. Du, and G. Ding. 2022. Evaluation of the effects of nitrogen, phosphorus, and potassium applications on the growth, yield, and quality of lettuce (Lactuca sativa L.). Agronomy 12(10), 2477. Doi: https://doi.org/10.3390/agronomy12102477
  • Ishfaq, M., Y. Wang, M. Yan., Z. Wang, L. Wu, C. Li, and X. Li. 2022. Physiological essence of magnesium in plants and its widespread deficiency in the farming system of China. Front. Plant Sci. 13, 802274. Doi: https://doi.org/10.3389/fpls.2022.802274
  • Leghari, S.J., N.A Wahocho, G.M. Laghari, A. Hafeez-Laghari, G. Mustafa-Bhabhan, and K. Hussain-Talpur. 2016. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 10(9), 209-219.
  • Liu, C.W., Y. Sung, B.-C. Chen, and H.-Y. Lai. 2014. Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.). Int. J. Environ. Res. Public Health 11(4), 4427-4440. Doi: https://doi.org/10.3390/ijerph110404427
  • Mahlangu, R.I.S., M.M. Maboko, D. Sivakumar, P. Soundy, and J. Jifon. 2016. Lettuce (Lactuca sativa L.) growth, yield, and quality response to nitrogen fertilization in a non-circulating hydroponic system. J. Plant Nutr. 39(12), 1766-1775. Doi: https://doi.org/10.1080/01904167.2016.1187739
  • Martínez, A. 1988. Diseños experimentales: métodos y elementos de teoría. Editorial Trillas, Mexico, DF.
  • Martínez, F.E., and G.A. Garcés. (2010). Crecimiento y producción de lechuga (Lactuca sativa L. var. romana) bajo diferentes niveles de potasio. Rev. Colomb. Cienc. Hortic. 4(2), 175-184. Doi: https://doi.org/10.17584/rcch.2010v4i2.1239
  • Peng, Y.Y., L.L. Liao, S. Liu, M.M. Nie, J. Li, L.D. Zhang, J.F. Ma, and Z.C. Chen. 2019. Magnesium deficiency triggers SGR–mediated chlorophyll degradation for magnesium remobilization. Plant Physiol. 181(1), 262-275. Doi: https://doi.org/10.1104/pp.19.00610
  • Sangare, S.K., E. Compaore, A. Buerkert, M. Vanclooster, M.P. Sedogo, and C.L Bielders. 2012. Field-scale analysis of water and nutrient use efficiency for vegetable production in a West African urban agricultural system. Nutr. Cycling Agroecosyst. 92, 207-224. https://doi.org/10.1007/s10705-012-9484-2
  • Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH image to ImageJ: 25 years of image analysis. Nat. Methods. 9(7), 671-675. Doi: https://doi.org/10.1038/nmeth.2089
  • Simkin, A.J., M. Faralli, S. Ramamoorthy, and T. Lawson. 2020. Photosynthesis in non-foliar tissues: Implications for yield. The Plant J. 101(4), 1001-1015. Doi: https://doi.org/10.1111/tpj.14633
  • UNEP, United Nations Environment Programme. 2019. Frontiers 2018/19. Emerging issues of environmental concern. Nairobi.
  • Yang, G.-H., L.-T. Yang, H.-X. Jiang, Y. Li, P. Wang, and L.-S. Chen. 2012. Physiological impacts of magnesium-deficiency in Citrus seedlings: Photosynthesis, antioxidant system and carbohydrates. Trees 26, 1237-1250. Doi: https://doi.org/10.1007/s00468-012-0699-2
  • Zhang, X., E.A. Davidson, D.L. Mauzerall, T.D. Searchinger, P. Dumas, and Y. Shen. 2015. Managing nitrogen for sustainable development. Nature 528, 51-59. Doi: https://doi.org/10.1038/nature15743

Downloads

Download data is not yet available.