Effect of maturity accelerants on the postharvest behavior of avocados (Persea americana Mill.) cv. Lorena
Abstract
The global demand for avocados has grown in recent years. In Colombia, the Lorena variety is widely accepted in the market but the challenge for consumers is determining when the fruits should be consumed. However, there are no studies on this matter because most research is done on the Hass variety, which dominates global production. Therefore, the objective was to evaluate ripening treatments in Lorena variety avocado fruits to establish the postharvest behavior, avoid quality losses, and maintain organoleptic characteristics, facilitating commercialization of the product. A randomized complete block design was used with two blocks (maturity I and maturity II), five maturation treatments, three ethylene applications (2, 4 and 6 mL L-1), fruits wrapped in unprinted newspaper, and a control. The fruits reached 16 days after harvest (dah) with commercial quality. The application of 6 mL L-1 of ethylene presented the greatest mass loss. At 6 dah, the climacteric peak presented with the highest values of soluble solids, maturity index (MI), and loss of firmness and the lowest percentage of total titratable acidity (TTA). The TTA had higher values for the control treatment during storage. The MI registered two maximums during postharvest: the first in the climacteric peak, and the second during fruit senescence.
Keywords
ethylene, senescence, firmness, acumulated mass loss, tropical fruits
References
- Agronet. 2021. Área sembrada, área cosechada, producción y rendimiento del cultivo de aguacate según departamento 2016-2017. In: https://www.agronet.gov.co/Documents/10-AGUACATE_2017.pdf; consulted: September, 2021.
- Almanza, H.K., U. Navarro, U. Miguel, and C.J. Ruiz. 2019. Extracción de colorante en polvo a partir de la semilla de aguacate en variedades Hass y Fuerte. Liment. Cienc. Tecnol. Aliment. 17(1), 5-14.
- Astudillo-Ordóñez, C.E. and P. Rodríguez. 2018. Parámetros fisicoquímicos del aguacate Persea americana Mill. cv. Hass (Lauraceae) producido en Antioquia (Colombia) para exportación. Corpoica Cienc. Tecnol. Agropecu. 19(2), 383-392. Doi: 10.21930/rcta.vol19_num2_art:694
- Benítez, A.M. 2018. Desarrollo de un empaque activo biodegradable para aguacate (Persea americana). Undergraduate thesis. Escuela Agrícola Panamericana, Zamorano, Honduras.
- Benítez, J., A. Sánchez, C. Bolaños, L. Bernal, C. Ochoa-Martínez, C. Vélez, and A. Sandoval. 2021. Cambios fisicoquímicos del aguacate Hass durante el almacenamiento frío y la maduración acelerada. Biotecnol. Sector Agropecuario Agroind. 19(2), 1-13. Doi: 10.18684/bsaa.v19.n2.2021.1490
- Bernal, A. and C. Díaz. 2008. Tecnología para el cultivo del Aguacate. Manual técnico 5. Corporación Colombiana de Investigación Agropecuaria, CORPOICA, Centro de Investigación La Selva, Rio Negro, Colombia.
- Bill, M., D. Sivakumar, A.K. Thompson, and L. Korsten. 2014. Avocado fruit quality management during the postharvest supply chain. Food Rev. Int. 30(3), 169-202. Doi: 10.1080/87559129.2014.907304
- Blakey, R., S. Tesfay, I. Bertling, and J. Bower. 2012. Changes in sugars, total protein, and oil in ‘Hass’ avocado (Persea americana Mill.) fruit during ripening. J. Hortic. Sci. Biotechnol. 87, 381-387. Doi: 10.1080/14620316.2012.11512880
- Buelvas-Salgado, G.A., J.H. Patiño-Gómez, and J.A. Cano-Salazar. 2012. Evaluación del proceso de extracción de aceite de aguacate Hass (Persea americana Mill.) utilizando tratamiento enzimático. Rev. Lasallista Investig. 9 (2), 138-150.
- Caparrotta, S., N. Bazihizina, C. Taiti, C. Costa, P. Menesatti, E. Azzarello, and E. Giordani. 2015. Use of volatile organic compounds and physicochemical parameters for monitoring the post-harvest ripening of imported tropical fruits. Eur. Food Res. Technol. 241(1), 91-102. Doi: 10.1007/s00217-015-2438-6
- Chen, J., X. Liu, F. Li, Y. Li, and D. Yuan. 2017. Cold shock treatment extends shelf life of naturally ripened or ethylene-ripened avocado fruits. PloS ONE 12(12), e0189991. Doi: 10.1371/journal.pone.0189991
- Cogo, S.F., M. Chaves, R. Schirmer, L. Zambiazi, J. Nora, J. Silva, and C. Rombaldi. 2011. Low soil water content during growth contributes to preservation of green colour and bioactive compounds of cold-stored broccoli (Brassica oleraceae L.) florets. Postharvest Biol. Technol. 60, 158-163. Doi: 10.1016/j.postharvbio.2010.12.008
- Díaz-Pérez, J.C. 2019.Transpiration. pp. 157-173. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington, UK. Doi: 10.1016/b978-0-12-813278-4.00008-7
- González-Cuello, R., J. Pérez-Mendoza, and V. Gelvez-Ordóñez. 2017. Incremento en la vida útil postcosecha del aguacate (Persea americana) utilizando recubrimientos a base de goma gelana. Rev. U.D.CA Act. & Div. Cient. 20(1), 101-110.
- Granados, A.M. 2013. Factores nutricionales que determinan el comportamiento productivo del aguacate (Persea americana Mill) Cv. Lorena en San Sebastián de Mariquita en el departamento del Tolima, Colombia. MSc thesis. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Medellín, Colombia.
- Herrera-González, J.A., S. Salazar-García, H.E. Martínez-Flores, and J.E. Ruiz-García. 2017. Indicadores preliminares de madurez fisiológica y comportamiento postcosecha del fruto de aguacate Méndez. Rev. Fitotec. Mex. 40(1), 55-63.
- Icontec, Instituto Colombiano de Normas Técnicas y Certificación. 2003. NTC 5209 Frutas frescas. Aguacate. Variedades mejoradas. Especificaciones. Bogota.
- Márquez, J., P. Yepes, L. Sánchez, and J. Osorio. 2014. Cambios físico-químicos del aguacate (Persea americana Mill. cv. “Hass”) en poscosecha para dos municipios de Antioquia. Temas Agrarios 19(1), 32-47.
- Romero, M.A. 2012. Comportamiento fisiológico del aguacate (Persea americana Mill.) Variedad Lorena en la zona de Mariquita, Tolima. MSc thesis. Facultad de Agronomía, Universidad Nacional de Colombia, Bogota.
- Ruiz, C.A. 2018. Descifrando el comportamiento genético y fisiológico de frutos de Persea americana var. americana cultivar Lorena. Universidad Nacional de Colombia. Bogota.
- Saltveit, M.E. 2019. Respiratory metabolism. pp. 73-91. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington, UK. Doi: 10.1016/b978-0-12-813278-4.00009-9
- Sañudo-Barajas, J.A., L. Lipan, M. Cano-Lamadrid, R. Vélez de la Rocha, L. Noruega-Artiaga, L. Sánchez-Rodríguez, A. Carbonell-Barrachina, and F. Hernández. 2019. Texture. pp. 293-314. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington, UK. Doi: 10.1016/b978-0-12-813278-4.00014-2
- Vallejo-Pérez, M.R., D. Téliz-Ortiz, M.T. Colinas-León, R. De La Torre-Almaraz, G. Valdovinos-Ponce, D. Nieto-Ángel, and D.L. Ochoa-Martínez. 2015. Alterations induced by avocado sunblotch viroid in the postharvest physiology and quality of avocado ‘Hass’ fruit. Phytoparasitica 43, 355-364. Doi: 10.1007/s12600-015-0469-y
- Vargas-Ortiz, M., G. Rodríguez-Jimenes, M. Salgado-Cervantes, and D. Pallet. 2016. Minimally processed avocado through flash vacuum-expansion: its effect in major physicochemical aspects of the puree and stability on storage. J. Food Process. Preserv. 41(3), e12988. Doi: 10.1111/jfpp.12988
- Yahia, E.M., A. Carrillo-López, and L.A Bello-Pérez. 2019. Carbohydrates. pp. 175-205. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington, UK. Doi: 10.1016/b978-0-12-813278-4.00009-9