Characterization of cape gooseberry (Physalis peruviana L.) fruits from plants irrigated with different regimens and calcium doses

Caracterización de frutos de uchuva (Physalis peruviana L.) provenientes de plantas regadas con diferentes regímenes de riego y dosis de calcio

Main Article Content

Javier Giovanni Álvarez-Herrera
Javier Enrique Vélez
Marilcen Jaime-Guerrero

Abstract

Cape gooseberry fruits have positioned in the world market due to their excellent nutritional characteristics, because they are an ideal food that contributes to raising the defenses of the human body and helps it to face diseases such as COVID-19, they are also a natural source of antioxidants and anticancer agents. In order to avoid the physiopathy of cracking in cape gooseberry fruits, these were characterized at harvest time, coming from greenhouse plants irrigated with different applications of water levels and irrigation frequencies, as well as different calcium doses, in a design of randomized complete blocks with 12 treatments. The blocks were the irrigation frequencies (4, 9 and 14 days), while the treatments were the combination of four irrigation coefficients (0.7, 0.9, 1.1 and 1.3 of the evaporation of the tank class A) and three doses of calcium (0, 50 and 100 kg ha-1). The plants were sown in 20 L pots with peat moss substrate.  Fruits were harvested at the color stage 5 and 6 of the calyx, from 19 weeks after transplanting. The different water levels and irrigation frequencies did not significantly affect the firmness of the cape gooseberry fruits, but there was a strong tendency that cracked gooseberry fruits are less firm than healthy fruits. As the irrigation coefficient increased, the total soluble solids (TSS) increased while the total titratable acids (TTA) decreased. Irrigation frequency of 14 days generated fruits with higher TSS and pH values. The calcium doses did not affect the calcium concentration in the fruits or the TSS, TTA and pH values. Therefore, it can be concluded that incremented irrigation coefficients (up to 1.3) increase the quality of cape gooseberry fruits.

Keywords:

Downloads

Download data is not yet available.

Article Details

References (SEE)

Agbemafle, R., J. Owusu-Sekyere, A. Bart-Plange, and J. Otchere. 2014. Effect of deficit irrigation and storage on physicochemical quality of tomato (Lycopersicon esculentum Mill., var. Pechtomech). Food Sci. Qual. Manage. 34, 113-121

Agronet. 2020. Sistema de estadísticas agropecuarias. Producción nacional por producto: uchuva. In: http://www.agronet.gov.co; consulted: May, 2020.

Almutairi, K.F., D.R. Bryla, and B.C. Strik. 2017. Potential of deficit irrigation, irrigation cutoffs, and crop thinning to maintain yield and fruit quality with less water in northern highbush blueberry. HortScience 52(4), 625-633. Doi: 10.21273/HORTSCI11533-16

Álvarez-Herrera, J., H. Balaguera-López, and G. Fischer. 2012. Effect of irrigation and nutrition with calcium on fruit cracking of the cape gooseberry (Physalis peruviana L.) in the three strata of the plant. Acta Hortic. 928, 163-170. Doi: 10.17660/ActaHortic.2012.928.19

Álvarez-Herrera, J., G. Fischer, L.P. Restrepo, and M. Quicazán. 2014. Contenidos de carotenoides totales y ácido ascórbico en frutos sanos y rajados de uchuva (Physalis peruviana L.). Acta Hortic. 1016, 7-81. Doi: 10.17660/ActaHortic.2014.1016.8

Álvarez-Herrera, J., G. Fischer, and J.E. Vélez. 2021. Análisis de la producción de uchuva (Physalis peruviana L.) durante el ciclo de cosechas en invernadero con diferentes láminas de riego. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 45(174), 109-121. Doi: 10.18257/raccefyn.1239

Álvarez-Herrera, J., G. Fischer, and J. Vélez-Sánchez. 2015. Producción de frutos de uchuva (Physalis peruviana L.) bajo diferentes láminas de riego, frecuencias de riego y dosis de calcio. Rev. Colomb. Cienc. Hortic. 9(2), 222-233. Doi: 10.17584/rcch.2015v9i2.4177

Aman, F. and S. Masood. 2020. How nutrition can help to fight against COVID-19 pandemic. Pak. J. Med. Sci. 36(COVID19-S4), 121-123. Doi: 10.12669/pjms.36.COVID19-S4.2776

Amézquita, N., H.E. Balaguera-López, and J.G. Álvarez-Herrera. 2008. Efecto de la aplicación precosecha de giberelinas y calcio en la producción, calidad y rajado del fruto de uchuva (Physalis peruviana L.). Rev. Colomb. Cienc. Hortic. 2(2), 133-144. Doi: 10.17584/rcch.2008v2i2.1182

Arah, I.K., H. Amaglo, E.K. Kumah, and H. Ofori. 2015. Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes: A mini review. Int. J. Agron. 2015, 478041. Doi: 10.1155/2015/478041

Balaguera-López, H.E., M. Espinal-Ruiz, J.M. Rodríguez-Nieto, A. Herrera-Arévalo, and L. Zacarías. 2021. 1-Methylcyclopropene inhibits ethylene perception and biosynthesis: A theoretical and experimental study on cape gooseberry (Physalis peruviana L.) fruits. Postharvest Biol. Technol. 174, 111467. Doi. 10.1016/j.postharvbio.2021.111467

Batista-Silva, W., V.L. Nascimento, D.B. Medeiros, A. Nunes-Nesi, D.M. Ribeiro, A. Zsögön, and W.L. Araujo. 2018. Modifications in organic acid profiles during fruit development and ripening: correlation or causation? Front. Plant Sci. 9, 1689. Doi: 10.3389/fpls.2018.01689

Bayona-Penagos, L.V., J.E. Vélez-Sánchez, and P. Rodríguez-Hernández. 2017. Effect of deficit irrigation on the postharvest of pear variety Triunfo de Viena (Pyrus communis L.) in Sesquile (Cundinamarca, Colombia). Agron. Colomb. 35(2), 238-246. Doi: 10.15446/agron.colomb.v35n2.63974

Bazalar Pereda, M.S., M.A. Nazareno, and C.I. Viturro. 2019. Nutritional and antioxidant properties of Physalis peruviana L. fruits from the Argentinean Northern Andean region. Plant Foods Human Nutr. 74, 68-75. Doi: 10.1007/s11130-018-0702-1

Bazalar Pereda, M.S., M.A. Nazareno, and C.I. Viturro. 2020. Optimized formulation of a Physalis peruviana L. fruit nectar: physicochemical characterization, sensorial traits and antioxidant properties. J. Food Sci. Technol. 57(9), 3267-3277. Doi: 10.1007/s13197-020-04358-w

Beckles, D.M. 2012. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Tecnol. 63(1), 129-140. Doi: 10.1016/j.postharvbio.2011.05.016

Bhatla, S.C. 2018. Abiotic stress. pp. 969-1028. In: Bhatla, S.C. and M.A. Lal (eds.). Plant physiology, development and metabolism. Springer Nature, Singapore. Doi: 10.1007/978-981-13-2023-1_31

Cataldo, E., L. Salvi, and G.B. Mattii. 2021. Effects of irrigation on ecophysiology, sugar content and thiol precursors (3-S-cysteinylhexan-1-ol and 3-S-glutathionylhexan-1-ol) on Vitis vinifera cv. Sauvignon Blanc. Plant Physiol. Biochem. 164, 247-259. Doi: 10.1016/j.plaphy.2021.04.029

Ciro Velasquez, H.J., O.H. Buitrago Giraldo, and S.A. Pérez Arango. 2007. Estudio preliminar de la resistencia mecánica a la fractura y fuerza de firmeza para fruta de uchuva (Physalis peruviana L.). Rev. Fac. Nal. Agr. Medellín 60(1), 3785-3796.

Colombia Icontec, Instituto Colombiano de Normas Técnicas. 1999. Frutas frescas. Uchuva. Especificaciones. Norma Técnica Colombiana NTC 4580. Bogota.

Duan, Y., L. Yang, H. Zhou, J. Zhou, H. Sun, and H. Gong. 2021. Structure and expression analysis of sucrose phosphate synthase, sucrose synthase and invertase gene families in Solanum lycopersicum. Int. J. Mol. Sci. 22(9), 4698. Doi: 10.3390/ijms22094698

El-Beltagi, H.S., H.I. Mohamed, G. Safwat, M. Gamal, and B.M.H. Megahed. 2019. Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanzen 71, 113-122. Doi: 10.1007/s10343-019-00456-8

Faghih, S., Z. Zamani, R. Fatahi, and M. Omidi. 2021. Infuence of kaolin application on most important fruit and leaf characteristics of two apple cultivars under sustained deficit irrigation. Biol. Res. 54, 1. Doi: 10.1186/s40659-020-00325-z

Fallahi, E. and S. Mahdavi. 2020. Effects of calcium with and without surfactants on fruit quality, mineral nutrient, respiration and ethylene evolution of ‘Red Spur Delicious’ apple. World J. Agric. Soil Sci. 4(5), 598. Doi: 10.33552/WJASS.2020.04.000598

Fischer, G. 1995. Effect of root zone temperature and tropical altitude on the growth, development and fruit quality of cape gooseberry (Physalis peruviana L.). PhD thesis. Humboldt-University, Berlin.

Fischer, G. 2005. El problema del rajado del fruto de la uchuva y su posible control. pp. 55-82. In: Fischer, G., D. Miranda, W. Piedrahita, and J. Romero. (eds.). Avances en cultivo, poscosecha y exportación de la uchuva Physalis peruviana L. en Colombia. Unibiblos, Universidad Nacional de Colombia, Bogota.

Fischer, G., H.E. Balaguera-López, and S. Magnitskiy. 2021a. Review on the ecophysiology of important Andean fruits: Solanaceae. Rev. UDCA Act. Div. Cient. 24(1), e1701. Doi: 10.31910/rudca.v24.n1.2021.1701

Fischer, G., H.E. Balaguera-López, and J. Álvarez-Herrera. 2021b. Causes of fruit cracking in the era of climate change. A review. Agron. Colomb. 39(2), 196-207.

Doi: 10.15446/agron.colomb.v39n2.97071

Fischer, G., D. Miranda, H.E. Balaguera-López, and S. Gómez-Caro. 2021c. La uchuva (Physalis peruviana L.), manejo integrado del cultivo y poscosecha. In: Cultivo, poscosecha, procesado y comercio de berries. SPE3, Valencia, Spain.

Fischer, G. and O. Martínez. 1999. Calidad y madurez de la uchuva (Physalis peruviana L.) en relación con la coloración del fruto. Agron. Colomb. 16(1-3), 35-39.

Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortic. 14(1), 76-89. Doi: 10.17584/rcch.2020v14i1.10893

García-Tejero, I., R. Romero-Vicente, J.A. Jiménez-Bocanegra, G. Martínez-García, V.H. Durán-Zuazo, and J.L. Muriel-Fernández. 2010. Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity. Agr. Water Manage. 97(5), 689-699. Doi. 10.1016/j.agwat.2009.12.012

Garzón-Acosta, C.P., D.M. Villarreal-Garzón, G. Fischer, A.O. Herrera, and D.W. Sanjuanelo. 2014. La deficiencia de fósforo, calcio y magnesio afecta la calidad poscosecha del fruto de uchuva (Physalis peruviana L.). Acta Hortic. 1016, 83-88. Doi: 10.17660/ActaHortic.2014.1016.9

Gordillo, O.P., G. Fischer, and R. Guerrero. 2004. Efecto del riego y de la fertilización sobre la incidencia del rajado en frutos de uchuva (Physalis peruviana L.) en la zona de Silvania (Cundinamarca). Agron. Colomb. 22(1), 53-62.

Guizani, M., S. Dabbou, S. Maatallah, G. Montevecchi, H. Hajlaoui, M. Rezig, A.N. Helal, and S. Kilani-Jaziri. 2019. Physiological responses and fruit quality of four peach cultivars under sustained and cyclic deficit irrigation in center-west of Tunisia. Agric. Water Manage. 217, 81-97. Doi: 10.1016/j.agwat.2019.02.021

Herrera, A. 2000. Manejo poscosecha. pp. 109-127. In: Flórez, V., G. Fischer, and A. Sora (eds.). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Unibiblos, Universidad Nacional de Colombia, Bogota.

Hocking, B., S.D. Tyerman, R.A.Burton, and M. Gilliham. 2016. Fruit calcium: transport and physiology. Front. Plant Sci. 7, 569. Doi: 10.3389/fpls.2016.00569

Jiang, F., A. López, S. Jeon, S.T. Freitas, Q. Yu, Z. Wu, J.M. Labavitch, S. Tian, A.L.T. Powell, and E. Mitcham. 2019. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. Horticultural Research 6, 17. Doi: 10.1038/s41438-018-0105-3

Kathpalia, R. and S.C. Bhatla. 2018. Plant mineral nutrition. pp. 37-81. In: Bhatla, S.C. and M.A. Lal (eds.). Plant physiology, development and metabolism. Springer Nature, Singapore. Doi: 10.1007/978-981-13-2023-1_2

Khan, A.S. and S. Ali. 2018. Preharvest sprays affecting shelf life and storage potential of fruits. pp. 209-255. In: Siddiqui, M.W. (ed.). Preharvest modulation of postharvest fruit and vegetable quality. Academic Press, London. Doi: 10.1016/B978-0-12-809807-3.00009-3

Kochhar, S.L. and S.K. Gujral. 2020. Plant physiology: Theory and applications. 2nd ed. Cambridge University Press, Cambridge, UK. Doi: 10.1017/9781108486392

Lal, M.A. 2018. Metabolism of storage carbohydrates. pp. 339-377. In: Bhatla, S.C. and M.A. Lal. (eds.). Plant physiology, development and metabolism. Springer Nature, Singapore. Doi: 10.1007/978-981-13-2023-1_9

Lambers, H. and R.S. Oliveira. Mineral nutrition. pp. 301-384. Plant physiological ecology. Springer, Cham, Germany. Doi: 10.1007/978-3-030-29639-1_9

Lara, I. 2013. Preharvest sprays and their effects on the postharvest quality of fruit. Stewart Postharvest Rev. 3, 1-12. Doi: 10.2212/spr.2013.3.5

Lima, J.M., P.D. Welter, M.F.S. Santos, W. Kavcic, B.M. Costa, A.F. Fagherazzi, F.R. Nerbass, A.A. Kretzschmar, L. Rufato, and G. Baruzzi. 2021. Planting density interferes with strawberry production efficiency in southern Brazil. Agronomy 11, 408. Doi: 10.3390/agronomy11030408

Lobos, T.E., J.B. Retamales, and E.J. Hanson. 2021. Early preharvest calcium sprays improve postharvest fruit quality in ‘Liberty’ highbush blueberries. Sci. Hortic. 227, 109790. Doi: 10.1016/j.scienta.2020.109790

Marín, A., J.S. Rubio, V. Martínez, and M.I. Gil. 2009. Antioxidant compounds in green and red peppers as affected by irrigation frequency, salinity and nutrient solution composition. J. Sci. Food Agric. 89, 1352-1359. Doi: 10.1002/jsfa.3594

Marschner, P. (ed.). 2012. Marschner’s mineral nutrition of higher plants. 3rd ed. Academic Press, London. Doi: 10.1016/C2009-0-63043-9

Maruenda, H., R. Cabrera, C. Cañari-Chumpitaz, J.M. López, and D. Toubiana. 2018. NMR-based metabolic study of fruits of Physalis peruviana L. grown in eight different Peruvian ecosystems. Food Chem. 262, 94-101. Doi: 10.1016/j.foodchem.2018.04.032

Medyouni, I., R. Zouaoui, E. Rubio, S. Serino, H.B. Ahmed, and N. Bertin. 2021. Effects of water deficit on leaves and fruit quality during the development period in tomato plant. Food Sci. Nutr. 9(4), 1949-1960. Doi: 10.1002/fsn3.2160

Miranda, D. and G. Fischer. 2021. Avances tecnológicos en el cultivo de la uchuva (Physalis peruviana L.) en Colombia. pp. 14-36. In: Fischer, G., D. Miranda, S. Magnitskiy, H.E. Balaguera-López, and Z. Molano (eds.). Avances en el cultivo de las berries en el trópico. Sociedad Colombiana de Ciencias Hortícolas, Bogota. Doi: 10.17584/IBerries

Mokhtar, S.M., H.M. Swailam, and H.E. Embaby. 2018. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder. Food Chem. 248, 1-7. Doi: 10.1016/j.foodchem.2017.11.117

Mubarok, S., S. Dahlania, and N. Suwali. 2019. Dataset on the change of postharvest quality of Physalis peruviana L. as an effect of ethylene inhibitor. Data Br. 24, 103849. Doi: 10.1016/j.dib.2019.103849

Niu, J., Y. Shi, K. Huang, Y. Zhong, J. Chen, Z. Sun, M. Luan and J. Chen. 2020. Integrative transcriptome and proteome analyses provide new insights into different stages of Akebia trifoliata fruit cracking during ripening. Biotechnol. Biofuels 13, 149. Doi: 10.1186/s13068-020-01789-7

Novoa, R.H., M. Bojacá, J.A. Galvis, and G. Fischer. 2006. La madurez del fruto y el secado del cáliz influyen en el comportamiento poscosecha de la uchuva (Physalis peruviana L.) almacenada a 12ºC. Agron. Colomb. 24(1), 77-86.

Özbahçe, A., A.F. Tari, S. Yücel, O. Okur, and H. Padem. 2014. Influence of limited water stress on yield and fruit quality of melon under soil-borne pathogens. Toprak Su Derg. 3(1), 70-76.

Patané, C., S. Tringali, and O. Sortino. 2011. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 129, 590-596. Doi: 10.1016/j.scienta.2011.04.030

Pessoa, C.C., F. Lidon, A.R. Coelho, J.C. Caleiro, A. Coelho, I.C. Luis, J.C. Kullberg, P. Legoinha, M. Brito, J.C. Ramalho, M.A.M. Guerra, R.G. Leitão, M. Simões, P. Scotti, J.M. Semedo, M.M. Silva, I.P. Pais, N. Leal, N. Alvarenga, E.M. Gonclaves, A.P. Rodrigues, M.J. Silva, M. Abreu, M.F. Pessoa, and F.H. Reboredo. 2021. Calcium biofortification of Rocha pears, tissues accumulation and physicochemical implications in fresh and heat-treated fruits. Sci. Hortic. 277, 109834. Doi: 10.1016/j.scienta.2020.109834

Poovarodom, S. and N. Boonplang. 2010. Soil calcium application and pre-harvest calcium and boron sprays on mangosteen fruit quality attributes. Acta Hort. 868, 359-366. Doi: 10.17660/ActaHortic.2010.868.48

Porro, D., M. Ramponi, T. Tomasi, L. Rolle, and S. Poni. 2010. Nutritional implications of water stress in grapevine and modifications of mechanical properties of berries. Acta Hortic. 868, 73-80. Doi: 10.17660/ActaHortic.2010.868.5

Rahman, M.U., M. Sajid, A. Rab, S. Ali, M.O. Shahid, A. Alam, M. Israr, and I. Ahmad. 2016. Impact of calcium chloride concentrations and storage duration on quality attributes of peach (Prunus persica). Russ. Agric. Sci. 42(2), 130-136. Doi: 10.3103/S1068367416020099

Ripoll, J., L. Urban, M. Staudt, F. López-Lauri, L. Bidel, and N. Bertin. 2014. Water shortage and quality of fleshy fruits-making the most of the unavoidable. J. Exp. Bot. 65(15), 4097-4117. Doi: 10.1093/jxb/eru197

Rufat, J., A, Arbonés, P. Villar, X. Domingo, M. Pascual, and J.M. Villar. 2010. Effects of irrigation and nitrogen fertilization on growth, yield and fruit quality parameters of peaches for processing. Acta Hortic. 868, 87-94. Doi: 10.17660/ActaHortic.2010.868.7

Soliman, M.A.M., H.A. Ennab, and G.B. Mikhael. 2018. Effect of periodic deficit irrigation at different fruit growth stages on yield and fruit quality of ‘Anna’ apple trees. J. Plant Prod. 9(1), 13-19. Doi: 10.21608/jpp.2018.35233

Vallarino, J.G. and S. Osorio. 2019. Organic acids. pp. 207-223. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington, UK. Doi: 10.1016/B978-0-12-813278-4.00010-5

Wang, Y., L. Guo, X. Zhao, Y. Zhao, Z. Hao, H. Luo and Z. Yuan. 2021. Advances in mechanisms and omics pertaining to fruit cracking in horticultural plants. Agronomy 11(6), 1045. Doi: 10.3390/agronomy11061045

Winkler, A. and M. Knoche. 2021. Calcium uptake through skins of sweet cherry fruit: Effects of different calcium salts and surfactants. Sci. Hortic. 276, 109761. Doi: 10.1016/j.scienta.2020.109761

Wojcik, P. 2012. Quality and ‘Conference’ pear storability as influenced by preharvest sprays of calcium chloride. J. Plant Nutr. 35(13), 1970-1983. Doi: 10.1080/01904167.2012.716890

Yahia, E.M., A. Carrillo-López, and L.A Bello-Pérez. 2019. Carbohydrates. pp. 175-205. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington, UK. Doi: 10.1016/b978-0-12-813278-4.00009-9

Zhou, H.M., F.C. Zhang, K. Roger, L.F. Wu, D.Z. Gong, N. Zhao, D.X. Yin, Y.Z. Xiang, and Z.J. Li. 2017. Peach yield and fruit quality is maintained under mild deficit irrigation in semi-arid China. J. Integr. Agric. 16(5), 1173-1183. Doi: 10.1016/S2095-3119(16)61571-X

Citado por: