Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efecto del régimen de riego en la producción de volátiles que incide en el aroma de la pera variedad Triunfo de Viena (Pyrus communis L.)

Fruit of pear (Pyrus communis L.) var. Triumph of Vienna.  Photo: J.E. Vélez

Resumen

El agua es el componente mayoritario de la planta que afecta directa e indirectamente los procesos fisiológicos. Uno de los efectos del déficit hídrico en el fruto de la pera es la modificación del aroma y no existe información sobre el efecto del déficit hídrico en el perfil sensorial y composición de volátiles de esta especie. El objetivo fue determinar la producción de volátiles en la cosecha y poscosecha del peral var. Triunfo de Viena (Pyrus communis L.) con riego deficitario regulado (RDR). Los tratamientos de riego consistieron en la aplicación de láminas de agua correspondiente al 100 (Control) 74 y 48% de la ETc, durante el periodo de crecimiento rápido del fruto, el resto de la temporada se regaron al 100% de la ETc. En los tratamientos deficitarios no hubo reducciones significativas respecto al control en la calidad de la fruta, obteniéndose un ahorro de agua en 74 y 48%ETc de 26 y 40%, respectivamente. Los ésteres fueron los compuestos volátiles con mayor contribución al aroma que aumentaron de forma constante durante la fase del climaterio. En condiciones limitantes de agua, regar con dosis deficitarias controladas permite obtener producciones similares a las de un cultivo bien regado, siempre que se realice en el estado fenológico de baja sensibilidad y los límites tolerables de estrés no se superen.

Palabras clave

Poscosecha, Micro extracción en fase sólida, Compuestos volátiles, Déficit de agua, Maduración, Ésteres

PDF (English)

Citas

  1. Agronet, Red de Información y Comunicación del Sector Agropecuario Colombiano. 2019. Área, producción y rendimiento por cultivo. In: Ministerio de Agricultura y Desarrollo Rural, https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; consulted: December, 2019.
  2. Allen, R.G., L.S. Pereira., D. Raes, and M. Smith. 1998. Crop evapotranspiration, guidelines for computing crop water requirements. Irrigation and Drainage Paper 56. FAO, Roma.
  3. Altisent, R., J. Graell., I. Lara, L. López, and G. Echeverria. 2011. Comparison of the volatile profile and sensory analysis of ‘Golden Reindeers’ apples after the application of a cold air period after ultralow oxygen (ULO) storage. J. Agric. Food Chem. 59, 6193-6201. Doi: https://doi.org/10.1021/jf2005029
  4. Andreu-Coll, L., L. Noguera-Artiaga, A. Carbonell-Barrachina, P. Legua, and F. Hernández. 2020. Volatile composition of prickly pear fruit pulp from six Spanish cultivars. J. Food Sci. 85(2), 358-363. Doi: https://doi.org/10.1111/1750-3841.15001
  5. Bangerth, F.K., J. Song, and J. Streif. 2012. Physiological impacts of fruit ripening and storage conditions on aroma volatile formation in apple and strawberry fruit. HortScience. 47, 4-10. Doi: https://doi.org/10.21273/HORTSCI.47.1.4
  6. Bhavadharani, R.K., V, Nagarajan, and R. Chandiramouli. 2019. Silicene nanosheet to discriminate the quality of pear fruit based on volatiles adsorption ---a DFT application. Condens. Matter Phys. 22(3), 33001. Doi: https://doi.org/10.5488/CMP.22.33001
  7. Cano-Lamadrid, M., A., Galindo, J. Collado-Gonzáles, P. Rodriguez, Z.C. Cruz, P. Legua, F. Burló, D. Morales, A. Carbonell-Barrachina, and F. Hernández. 2018. Influence of deficit irrigation and crop load on the yield and fruit quality in Wonderful and Mollar de Elche pomegranates. J. Sci. Food Agr. 98, 3098-3108. Doi: https://doi.org/10.1002/jsfa.8810
  8. Cano-Lamadrid, M., L, Lipan., F, Hernández., J. J, Martínez., P, Legua., A. Carbonell-Barrachina, and P, Melgarejo. 2018. Quality parameters, volatile composition, and sensory profiles of highly endangered spanish citrus fruits. J. Food Qual. 2018, 3475461. Doi: https://doi.org/10.1155/2018/3475461
  9. Galindo, A., A. Calín-Sánchez., I. Griñan., P. Rodríguez., Z.N. Cruz., I. F. Girón., M. Corell., R. Martínez-Font., A. Moriana., A. Carbonell-Barrachina., A. Torrecillas, and F. Hernández. 2017. Water stress at the end of the pomegranate fruit ripening stage produces earlier harvest and improves fruit quality. Sci. Hortic. 226, 68-74. Doi: https://doi.org/10.1016/j.scienta.2017.08.029
  10. Griñan, I., A. Galindo., P. Rodríguez., D. Morales., M. Corell., J. Centeno., J. Collado-Gonzales., A. Torrecillas., A. Carbonell-Barrachina, and F. Hernandez. 2019. Volatile composition and sensory and quality attributes of quince (Cydonia oblonga Mill.) fruits as affected by water stress. Sci. Hort. 244, 68-74 Doi: https://doi.org/10.1016/j.scienta.2018.09.013
  11. IGAC, Instituto Geográfico Agustín Codazzi. 2010. Clasificación de suelos en el departamento de Cundinamarca. Universidad Tecnológico y Pedagógica de Colombia, Departamento Nacional de Estadística; IGAC subdirección de Agrología 169, 325-327.
  12. Li, G., H. Jia., R. Wu., S. Hussain, and Y. Teng. 2012. Characterization of aromatic volatile constituents in 11 Asian pear cultivars belonging to different species. Afr. J. Agric. 7, 4761-4770. Doi: https://doi.org/10.5897/AJAR12.563
  13. Li, G., H. Jia., R. Wu, and Y. Teng. 2013. Changes in volatile organic compound composition during the ripening of ‘Nanguoli’ pears (Pyrus ussuriensis M.) harvested at different growing locations. J. Hortic. Sci. Biotechnol. 88 (5), 563-570. Doi: https://doi.org/10.1080/14620316.2013.11513007
  14. Li, G.P., J.H. Jia., Q. Li., M.J. Wang, and Y.W. Zhang. 2014. Emission of volatile esters and transcription of ethylene- and aroma-related genes during ripening of ‘Pingxiangli’ pear fruit (Pyrus ussuriensis M.). Sci. Hortic. 170, 17-23. Doi: https://doi.org/10.1016/j.scienta.2014.03.004
  15. Miranda, D., G. Fischer, and C. Carranza. 2013. Los frutales caducifolios en Colombia. Sociedad Colombiana de Ciencias Hortícolas, Bogotá.
  16. Morandi, B., P. Losciale., L. Manfrini., M. Zibordi., S. Anconelli., F. Galli., E. Pierpaoli, and L. Corelli. 2014. Increasing water stress negatively effects pear fruit growth by reducing first its xylem and then its phloem inflow. J. Plant Physiol. 171(16), 1500-1509. Doi: https://doi.org/10.1016/j.jplph.2014.07.005
  17. SAFC. 2011. SAFC Flavors and fragrances catalog. Sigma-Aldrich, Madrid.
  18. SAS Institute. 2010. Statistical analysis system version 8 for Windows Inc. Cary, NC.
  19. Sevilla, A., A. Carbonell., J. López, and F. García. 2011. Comparative effect of the addition of α-, β-, or γ-cyclodextrin on main sensory and physico–chemical parameters. J. Food Sci. 76(5), 347-353. Doi: https://doi.org/10.1111/j.1750-3841.2011.02190.x
  20. Stashenko, E, and J. Martínez. 2011. Preparación de la muestra: un paso crucial para el análisis y GC-MS. Scientia Chromatographica 3(1), 25-49. Doi: https://doi.org/10.4322/sc.2011.003
  21. UNESCO, United Nations Educational, Scientific and Cultural Oorganization. 2015. Science Report: towards 2030. Executive Summary. 2015. Water for a sustainable world the United Nations world water development report.
  22. Verzera, A., G. Dima., G. Tripodi., M. Ziino., C. Lanza, and A. Mazzaglia. 2011. Fast quantitative determination of aroma volatile constituents in melon fruits by headspace–solid-phase microextraction and gas chromatography–mass spectrometry. Food Analytical Methods. 4, 141-149. Doi: https://doi.org/10.1007/s12161-010-9159-z
  23. Wang, M. Y., E. Macrae., M. Wohlers, and K. Marsh. 2011. Changes in volatile production and sensory quality of kiwifruit during fruit maturation in Actinidia deliciosa ‘Hayward’ and A. chinensis ‘Hor 100%ETc6A’. Postharvest Biol. Technol. 59, 16–24. Doi.org/10.1016/j.postharvbio.2010.08.010
  24. Yanine, A.G., L. García., C.J.R. Pérez., V.C. Lopez., I. Orriols, and F. Lopez. 2013. Aromatically enhanced pear distillates from Blanquilla and Conference varieties using a packed column. J. Agric. Food Chem. 61(20), 493-4942. Doi: https://doi.org/10.1021/jf304619e
  25. Zhou, X., L. Dong., Q. Zhou., J. Wang., N. Chang., Z. Liu, and S. Ji. 2015. Effects of intermittent warming on aroma-related esters of 1-methyllcyclopropenetreated ‘Nanguo’ pears during ripening at room temperature. Sci. Hortic. 185, 82-89. Doi: https://doi.org/10.1016/j.scienta.2015.01.021
  26. Zlatic, E., V. Zadnikb., J. Fellmanc., L. Demsara., J. Hribara., Z. Cejíc, and R. Vidrih. 2016. Comparative analysis of aroma compounds in ‘Bartlett’ pear in relation to harvest date, storage conditions, and shelf life. Postharvest Biol. Technol. 117, 71-80. Doi: https://doi.org/10.1016/j.postharvbio.2016.02.004

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 > >> 

También puede {advancedSearchLink} para este artículo.