Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Cuantificación de compuestos cianogénicos, amigdalina, prunasina y ácido cianhídrico en almendras (Prunus dulcis Miller) para usos industriales

Fruits, cultivation, seeds and flowers of almond tree. Photo: F. Dicenta

Resumen

El objetivo de esta investigación fue cuantificar los niveles de concentración de los compuestos cianogénicos, amigdalina y prunasina presentes en algunas variedades de almendras, considerando su conversión a ácido cianhídrico, y su posible consumo además de otros usos industriales, se utilizaron semillas de 29 variedades comerciales de almendro (Prunus dulcis Miller), evaluando su concentración y niveles de toxicidad, teniendo en cuenta el grado mínimo de ingesta teórica tanto para el consumo humano como para los animales, a través de los piensos, esto en términos de subproductos. Además, se determinaron propiedades termofísicas (conductividad térmica, difusividad térmica, calor específico y densidad) y usos industriales. La concentración se determinó mediante técnicas cromatograficas (HPLC) y colorimetría (microdifusión). Los resultados obtenidos mostraron niveles bajos de amigdalina desde "no detectado" hasta 375.40 mg/100 g de muestra, dependiendo de las variedades dulce, ligeramente amarga y amarga. Los resultados indican su posibilidad de comercialización, usos y aplicaciones en la industria alimentaria y farmacéutica.

Palabras clave

Toxicidad compuestos cianogénicos, Golosinas, Nutrición, Usos industriales, Cp almendra

PDF (English)

Citas

  1. Abd Aal, M.H.E., E.G. Gomoa, and H.A. Karara. 1987. Bitter almond, plum and mango kernels as sources of lipids. Fett/Lipid 89(8), 304-306. Doi: 10.1002/lipi.19870890803
  2. Abraham, K., T. Buhrke, and A. Lampen. 2016. Bioavailability of cyanide after consumption of a single meal of foods containing high levels of cyanogenic glycosides: A crossover study in humans. Arch. Toxicol. 90, 559-574. Doi: 10.1007/s00204-015-1479-8
  3. Alasalvar, C. and B.W. Bolling. 2015. Review of nut phytochemicals, fat‐soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 113(Suppl 2), 68-78. Doi: 10.1017/S0007114514003729
  4. Andréo Filho, N., L. Pessole, M. Yang, M. Issa, and H. Ferraz. 2007. Aplicación de recubrimiento gastro-resistente en núcleos comprimidos conteniendo didanosina utilizando diferentes equipos: Bombo grageador convencional, tambor perforado y lecho fluido. Lat. Am. J. Pharm. 26(5), 669-676.
  5. Ansell, M. and F.A. Lewis. 1970. A review of cyanide concentrations found in human organs. A survey of literature concerning cyanide metabolism, 'normal', non-fatal, and fatal body cyanide levels. J. Forensic. Med. 17(4), 148-155.
  6. AOAC, Association of Official Agricultural Chemists. 1990. Método 930.15 – determinación extracto etéreo; método 920.39 – determinación cenizas; método 942.04 - determinación fibra cruda; método 962.09 – determinación proteína cruda; método 955.04 – determinación de grasa. Washington, DC.
  7. Armstrong, H.E., E.F. Armstrong, and E. Horton. 1908. Studies on enzyme action. XII.-The enzymes of emulsin. Proc. Royal Soc. B: Biol. Sci. 80, (540), 321-331. Doi: 10.1098/rspb.1908.0031
  8. Arrázola, G., F. Dicenta, and N. Grané. 2015. Evolution of the amygdalin and prunasin content during the development of almond (Prunus dulcis Miller). Rev. Fac. Agron. (LUZ) 32, 63-81.
  9. Arrázola, G., N. Grane, M.L. Martin, and F. Dicenta. 2013. Determination of cyanogenic compound amygdalin and prunasin in almond kernels (Prunus dulcis L.) by using liquid chromatography. Rev. Colomb. Quim. 42(1), 13-21.
  10. Bainbridge, M. 1996. In methods for assessing quality characteristics of non-grain starch staples. Part 2: Field methods. Natural resources Institute, Chatham, UK. pp. 27-29.
  11. Ballhorn, D.J. 2011. Cyanogenic glycosides in nuts and seeds. pp. 129-136. In: Preedy, V.R., R.R. Watson, and V.B. Patel (eds.). Nuts and seeds in health and disease prevention. Academic Press, London. Doi: 10.1016/B978-0-12-375688-6.10014-3
  12. Bark, L.S. and H.G. Higson. 1963. A review of the methods available for the detection and deternination of small amount of cyanide. Analyst 1051, 751-760. Doi: 10.1039/an9638800751
  13. Bernat, N., M. Cháfer, A. Chiralt, and C. González-Martínez. 2015. Development of a non‐dairy probiotic fermented product based on almond milk and inulin. Food Sci. Technol. Int. 21(6), 440-453. Doi: 10.1177/1082013214543705
  14. Blum, D. 2010. The Poisoner’s handbook: Murder and the birth of forensic medicine in Jazz Age New York. Penguin Press, New york, NY.
  15. Borron, S.W. and F.J. Baud. 2012. Antidotes for acute cyanide poisoning. Curr. Pharm. Biotechnol. 13(10), 1940-1948. Doi: 10.2174/138920112802273182
  16. Briggs, D.R. and D. Yuen. 1978. Determination of cyanide in apricot kernels. Proc. Nutr. Soc. Austral. 3(1), 103-104.
  17. Casanova, P., P.C. Corrêa, K. Solís, and J.C.C. Campos. 2013. Thermal properties of Conilon coffee fruits. IOSR J. Eng. 3(11), 29-35. Doi: 10.9790/3021-031152935
  18. Chaouali, N., I. Gana, A. Dorra, F. Khelifi, A. Nouioui, W. Masri, I. Belwaer H. Ghorbel, and A. Hedhili. 2013. Potential toxic levels of cyanide in almonds (Prunus amygdalus), apricot kernels (Prunus armeniaca), and almond syrup. Int. Sch. Res. Notices 2013, 610648. Doi: 10.1155/2013/610648
  19. Choi, Y. and M.R. Okos. 1986. Effects of temperature and composition on the thermal properties of foods. pp. 93-101. In: Maguer, L.M. and P. Jelen (Eds.), Food engineering and process applications. Vol. 1: Transport phenomena. Elsevier, New York, NY.
  20. Conn, E.E. 1980. Cyanogenic compound. Ann. Rev. Plant Physiol. 31, 433-451. Doi: 10.1146/annurev.pp.31.060180.002245
  21. Cunha, E.S., G.P.A. Lima, J.H.O. Sales, and E.A. Oliveira. 2021. Determinação de propriedades termofísicas de amêndoas secas de cupuaçu (Theobroma grandiflorum). J. Eng. Exact Sci. 7(2), 11955-01. Doi: 10.18540/jcecvl7iss2pp11955-01-12e
  22. Davis, R.H. 1991. Cyanogens. pp. 202-225. In: Felix D'Mello, J.P., C.M. Duffus, and J.H. Duffus (eds.). Toxic substances in crop plants. Woodhead Publishing, Cambridge, UK. Doi: 10.1533/9781845698454.202
  23. Delgado-Tobón, A.E., W.A. Aperador-Chaparro, and R.G. García-Cáceres. 2018. Evaluation of the lubricating power of sweet almond oil without additives. DYNA 85(205), 179-183. Doi: 10.15446/dyna.v85n205.68033
  24. Dicenta, F. and J.E. García. 1993. Inheritance of the kernel flavour in almond. Heredity 70, 308-312. Doi: 10.1038/hdy.1993.44
  25. Dicenta, F, P. Martínez-Gómez, N. Grané, M.L. Martín, A. León, J.A. Cánovas, and V. Berenguer. 2002. Relationship between cyanogenic compounds in kernels, leaves, and roots of sweet and bitter kernelled almonds. J. Agric. Food Chem. 50(7), 2149-2152. Doi: 10.1021/jf0113070
  26. Du, L., M. Bokanga, B.L. Möller, and B.A. Halkier. 1995. The biosynthesis of cyanogenic glucosides in roots cassava. Phytochemistry 39(2), 323-326. Doi: 10.1016/0031-9422(94)00878-W
  27. EFSA, European Food Safety Authority. 2007. Opinion of the scientific panel on contaminants in the food chain [CONTAM] related to cyanogenic compounds as undesirable substances in animal feed. EFSA J. 434. Doi: 10.2903/j.efsa.2007.434
  28. Egan, S.V., H.H. Yeoh, and J.H. Bradbury. 1998. Simple picrate paper kit for determination of the cyanogenic potential of cassava flour. J. Sci. Food Agric. 76(1), 39-48. Doi: 10.1002/(SICI)1097-0010(199801)76:1<39::AID-JSFA947>3.0.CO;2-M
  29. Egekeze, J.O. and F.W. Oehme. 1980. Cyanides and their toxicity: A literature review. Vet. Q. 2(2), 104-114. Doi: 10.1080/01652176.1980.9693766
  30. EPA. 1990. Summary review of health effects associated with hydrogen cyanide. Health issue assessment environmental criteria and assessment office. EPA/600/8-90/002F. Office of Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC.
  31. Evans-Johnson, J.A., J.A. Garlick, E.J. Johnson, X.D. Wang, and C.Y. Oliver Chen. 2013. A pilot study of the photoprotective effect of almond phytochemicals in a 3D human skin equivalent. J. Photochem. Photobiol. 126, 17-25. Doi: 10.1016/j.jphotobiol.2013.07.006
  32. FAO, Food and Agricultural Organization; WHO, World Health Organization. 2012. Safety evaluation of certain food additives and contaminants: prepared by the seventy-fourth meeting of the joint FAO/WHO expert committee on food additives. WHO Food Additives Series 65, Genova.
  33. Fernández-Cuesta, A., M.R. Aguirre-González, M.V. Ruiz-Méndez, and L. Velasco. 2012. Validation of a method for the analysis of phytosterols in sunflower seeds. Eur. J. Lipid Sci. Technol. 114(3), 325-331. Doi: 10.1002/ejlt.201100138
  34. Ferreira, S.R. and A.R.S, Costa. 2009. Parámetros de transferencia de materia en el secado de frutas. Información Tecnológica 20(2), 89-104.
  35. Forcada, C., L. Velasco, R. Socias i Company, and A. Fernández i Marti. 2015. Association mapping for kernel phytosterol content in almond. Front. Plant Sci. 6, 530. Doi: 10.3389/fpls.2015.00530
  36. Frehner, M., M. Scalet, and E.E. Conn. 1990. Pattern of the cyanide-potential in developing fruits: Implications for Plants Accumulating Cyanogenic Monoglucosides (Phaseolus lunatus) or Cyanogenic Diglucosides in Their Seeds (Linum usitatissimum, Prunus amygdalus). Plant. Physiol. 94(1), 28-34. Doi: 10.1104/pp.94.1.28
  37. García-Pascual, P., P. Mateos, M. Carbonell, and D.M. Salazar. 2003. Influence of storage conditions on the quality of shelled and roasted almonds. Biosyst. Eng. 84, 201-209. Doi: 10.1016/S1537-5110(02)00262-3
  38. Garrido, I., M. Monagas, C. Gómez‐Cordoves and B. Bartolomé. 2008. Polyphenols and antioxidant properties of almond skins: influence of industrial processing. J. Food Sci. 73(2), 106-115. Doi: 10.1111/j.1750-3841.2007.00637.x
  39. Gleadow, R.M. and B.L. Møller. 2014. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu. Rev. Plant Biol. 65, 155-185. Doi: 10.1146/annurev-arplant-050213-040027
  40. Grasselly, C. and P. Crossa-Raynaud. 1980. L´amandier, techniques agricoles et productions méditerraneennes. G. P. Maisonneuve & Larose, Paris.
  41. Halkier, B.A. and B.L. Møller. 1989. Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Physiol. 90(4), 1552-1559. Doi: 10.1104/pp.90.4.1552
  42. Haque, M.R. and J.H. Bradbury. 2002. Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chem. 77(1), 107-114. Doi: 10.1016/S0308-8146(01)00313-2
  43. Hayes, D., M. Angove, J. Tucci, and C. Dennis. 2016. Walnuts (Juglans regia) Chemical Composition and Research in Human Health. Crit. Rev. Food Sci. Nutr. 56(8), 1231-1241. Doi: 10.1080/10408398.2012.760516
  44. Heppner, M.J. 1923. The factor for bitterness in the sweet almond. Genetics 8, 390-392. Doi: 10.1093/genetics/8.4.390
  45. Heppner, M.J. 1926. Further evidence on the factor for bitterness in the sweet almond. Genetics 11, 605-606. Doi: 10.1093/genetics/11.6.605
  46. Ibar, L. 1985. Cultivo moderno del almendro. Editores Aedos, Barcelona, Spain.
  47. Jensen, N., M. Zagrobelny, K. Hjernø, C.E. Olsen, J. Houghton-Larsen, J. Borch, B.L. Møller, and S. Bak. 2011. Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nat. Commun. 2, 273. Doi: 10.1038/ncomms1271
  48. Kobayashi, K. and K. Hisamatsu. 1978. Coating agent for roasted nut and grins. Patent 77 38, 107 Chem. Abstr. 88, 361-362.
  49. Lucas, B. and A. Sotelo. 1984. Simplified test for the quantitation of cyanogenic glucosides in wild and cultivated seeds. Nutr. Rep. Int. 29, 711-719.
  50. Mandalari G., A. Tomaino, T. Arcorasi, and M. Martorana. 2010. Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). J. Food Compos. Anal. 23(2), 166-174
  51. Mandenius, C., L. Büelow, and B. Danielsson. 1983. Determination of amygdalin and cyanide in industrial food samples using enzymic methods. Acta Chem. Scand. 37(8), 739-742. Doi: 10.3891/acta.chem.scand.37b-0739
  52. Martins, I.M., Q. Chen, and C.Y. Oliver Chen. 2016. Emerging functional foods derived from almonds. In: Ferreira, I.C.F.R., P. Morales and L. Barros (eds.). Wild plants, mushrooms and nuts: Functional Food Properties and Applications. John Wiley & Sons, Chichester, UK.
  53. McCarty, C.D., J.W. Leslie, and H.B. Frost. 1952. Bitterness of kernels of almond x peach hybrids and their parents. Proc. Am. Soc. Hort. Sci. 59, 254-258.
  54. Møller, B.L. and D.S. Seigler. 1991. Biosynthesis of cyanogenic glycosides, cyanolipids and related compounds. 563-609. In: Singh, B.K. (ed.). Plant amino acids: Biochemistry and biotechnology. Marcel Dekker, New York, NY.
  55. Monagas, M., I. Garrido, R. Lebron-Aguilar, B. Bartolomé, and C. Gómez-Cordovés. 2007. Almond (Prunus dulcis (Mill.) D.A. Webb) skins as a potential source of bioactive polyphenols. J. Agric. Food Chem. 55(21), 8498-8507. Doi: 10.1021/jf071780z
  56. ICONTEC, Instituto Colombiano de Normas Técnicas y Certificación. 2002. Norma Tecnica Colombiana, NTC 336, grasas y aceites animales y vegetales. Método de la determinación de la densidad (masa por volumen convencional). Bogota.
  57. Oliveira, I., A.S. Meyer, S. Afonso, A. Sequeira, A. Vilela, P. Goufo, H. Trindade, and B. Gonçalves. 2020. Effects of different processing treatments on almond (Prunus dulcis) bioactive compounds, antioxidant activities, fatty acids, and sensorial characteristics. Plants (Basel) 9(11), 1627. Doi: 10.3390/plants9111627
  58. Onabolu, A.O., O.S.A. Oluwole, H. Rosling, and M. Bokanga. 2002. Processing factors affecting the level of residual cyanohydrins in gari. J. Sci. Food Agric. 82(9), 966‐969. Doi: 10.1002/jsfa.1131
  59. Polesello, A. and A. Rizzolo. 1989. Caratteristiche nutrizionali e utilizzazione industriale delle mandorle. Frutticoltura 51(4), 43-50.
  60. Poulton, J. and C.P. Li. 1994. Tissue level compartmentation of (R)-amygdalin and amygdalin hydrolase prevents large-scale cyanogen in undamaged Prunus seeds. Plant Physiol. 104, 29-35. Doi: 10.1104/pp.104.1.29
  61. Rodushkin, I, E. Engström, D. Sörlin, and D. Baxter. 2008. Levels of inorganic constituents in raw nuts and seeds on the Swedish market. Sci. Total Environ. 392(2-3), 290-304. Doi: 10.1016/j.scitotenv.2007.11.024
  62. Sánchez-Pérez, R., K. Jørgensen, C.E. Olsen, F. Dicenta, and B. Møller. 2008. Bitterness in almonds. Plant Physiol. 146(3), 1040-1052. Doi: 10.1104/pp.107.112979
  63. Sánchez-Pérez, R., S. Pavan, R. Mazzeo, C. Moldovan, R.A. Cigliano, J. Del Cueto, F. Ricciardi, C. Lotti, L. Ricciardi, F. Dicenta, R.L. López-Marques, and B.L. Møller. 2019. Mutation of a bHLH transcription factor allowed almond domestication. Science 364(6445), 1095-1098. Doi: 10.1126/science.aav8197
  64. Sibbesen, O., B. Koch, B.A. Halkier, and B.L. Møller. 1994. Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Proc. Natl. Acad. Sci. USA 91(21), 9740-9744. Doi: 10.1073/pnas.91.21.9740
  65. Thodberg, S., J. Del Cueto, R. Mazzeo, S. Pavan, C. Lotti, F. Dicenta, E.H.J. Neilson, B.L. Møller, and R. Sánchez-Pérez. 2018. Elucidation of the amygdalin pathway reveals the metabolic basis of bitter and sweet almonds (Prunus dulcis). Plant Physiol. 178(3), 1096-1111. Doi: 10.1104/pp.18.00922
  66. Tuncel, G., M.J.R. Nout, and L. Brimer. 1995. The effects of grinding, soaking and cooking on the degradation of amygdalin of bitter apricot seeds. Food Chem. 53(4), 447‐451. Doi: 10.1016/0308-8146(95)99841-M
  67. Vargas, F.J., M.A. Romero, and I. Batlle. 2001. Kernel taste inheritance in almond. Options Méditerr. 56, 129-134..
  68. WHO, World Health Organization. 2004. Hydrogen cyanide and cyanides: Human health aspects. Concise International Chemical Assessment Document 61. Geneva.
  69. Zacheo, G., M.S. Cappello, A. Gallo, A. Santino, and A.R. Cappello. 2000. Changes associated with post-harvest ageing in almond seeds. LWT Food Sci. Technol. 33(6), 415-423. Doi: 10.1006/fstl.2000.0679

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 > >> 

También puede {advancedSearchLink} para este artículo.