Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Actividad insecticida y fitotóxica del aceite esencial de Eryngium foetidum L. colombiano

Eryngium foetidum L. Photo: B.E Jaramillo-Colorado

Resumen

Eryngium foetidum L. es una hierba bienal perteneciente a la familia Apiaceae, que se utiliza ampliamente como planta medicinal en la mayoría de las regiones tropicales. En este trabajo de investigación, se estudió la actividad del aceite esencial (AE) de E. foetidum contra Hyalomma lusitanicum, Koch, y su fitotoxicidad en la germinación de semillas de Lolium perenne y Lactuca sativa. El AE de E. foetidum se obtuvo mediante la técnica de hidrodestilación. Se utilizó cromatografía de gases acoplada a espectrometría de masas (GC–MS) para identificar los metabolitos volátiles. Se encontraron quince compuestos en el AE de E. foetidum. Los principales compuestos fueron E-2-dodecenal (53,0%), trimetilbenzaldehído (duraldehído) (14,8%), ciclododecano (4,4%), trans-tetradec-enal (3,9%), decanal (3,6%), trans-2-dodecen-1-ol (3,0%) y D-limoneno (1,5%), respectivamente. El AE de E. foetidum, y dos de sus compuestos principales individuales (2-dodecenal, y duraldehído) tuvieron baja actividad fitotóxica cuando fueron comparados con el porcentaje de inhibición de la germinación del control (carvona), en semillas de L. perenne y L. sativa. En cuanto a la actividad acaricida contra Hyalomma lusitanicum, la CL50 (µg µL-1) se determinó mediante un análisis probit (P>0,05). El aceite esencial de E. foetidum mostró una mortalidad del 100% sobre H. lusitanicum a una concentración de 10 µg µL-1, y CL50 = 4.2 µg µL-1. Los resultados obtenidos del aceite esencial de E. foetidum muestran un gran potencial para desarrollar biocidas naturales para el control de H. lusitanicum debido a su composición química rica en aldehídos y derivados bencénicos, y sin efectos fitotóxicos adversos.

Palabras clave

Lactuca sativa, Lolium perenne, Hyalomma lusitanicum, Fitotoxicidad, Acaricidas

PDF (English)

Referencias

  • Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 265-267. Doi: https://doi.org/10.1093/jee/18.2.265a
  • Abd-ElGawad, A.M., A.E.N.G. El Gendy, A.M. Assaeed, S.L. Al-Rowaily, A.S. Alharthi, T.A. Mohamed, and A.I. Elshamy. 2020. Phytotoxic effects of plant essential oils: A systematic review and structure-activity relationship based on chemometric analyses. Plants 10(1), 36. Doi: https://doi.org/10.3390/plants10010036
  • Adams, R.P. 2007. Identification of essential oil components by gas chromatography/ mass spectroscopy. 4th ed. Allured Pub., Carol Stream, IL
  • Bernal, R., S.R. Gradstein, and M. Celis (eds.). 2015. Catálogo de plantas y líquenes de Colombia. In: Universidad Nacional de Colombia, Instituto de Ciencias Naturales, http://catalogoplantasdecolombia.unal.edu.co/es/
  • Bewley, J.D., K. Bradford, and H. Hilhorst. 2013. Seeds: physiology of development, germination and dormancy. 3th ed. Springer Science & Business Media, NY. Doi: https://doi.org/10.1007/978-1-4614-4693-4
  • Chandrika, R., K.J. Thara Saraswathi, and G.R. Mallavarapu. 2015. Constituents of the essential oils of the leaf and root of Eryngium foetidum L. from two locations in India. J. Essent. Oil-Bear. Plants 18(2), 349-358. Doi: https://doi.org/10.1080/0972060X.2014.960277
  • Chowhan, N., H.P. Singh, D.R. Batish, S. Kaur, N. Ahuja, and R.K. Kohli. 2013. β-Pinene inhibited germination and early growth involves membrane peroxidation. Protoplasma 250, 691-700. Doi: https://doi.org/10.1007/s00709-012-0446-y
  • De Oliveira-Cruz, E.M., L.M. Costa-Junior, J.A. Oliveira Pinto, D.A. Santos, S.A. Araujo, M.F. Arrigoni-Blank, L. Bacci, P.B. Alves, S.C.H. Cavalcanti, and A.F. Blank. 2013. Acaricidal activity of Lippia gracilis essential oil and its major constituents on the tick Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 195 (1-2), 198-202. Doi: https://doi.org/10.1016/j.vetpar.2012.12.046
  • Demirci, S. and E.E. Özkan. 2014. Ethnobotanical studies of some Apiaceae plants in Kahramanmaras and a review of their phytochemical studies. J. Fac. Pharm. Istanb. 44(2), 241-250.
  • Djebir, S., S. Ksouri, M. Trigui, S. Tounsi, A. Boumaaza, Y. Hadef, and A. Benakhla. 2019. Chemical composition and acaricidal activity of the essential oils of some plant species of Lamiaceae and Myrtaceae against the vector of tropical bovine Theileriosis: Hyalomma scupense (syn. Hyalomma detritum). Biomed. Res. Int. 7805467. Doi: https://doi.org/10.1155/2019/7805467
  • Ellse, L. and R. Wall. 2014. The use of essential oils in veterinary ectoparasite control: A review. Med. Veter. Entomol. 28(3), 233-243. Doi: https://doi.org/10.1111/mve.12033
  • Erdem, S.A., S.F. Nabavi, I.E. Orhan, M. Daglia, M. Izadi, and S.M. Nabavi. 2015. Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium. Daru J. Pharm. Sci. 23, 53. Doi: https://doi.org/10.1186/s40199-015-0136-3
  • Estrada-Peña, A., M.P. Pfäffle, and T.N. Petney. 2017. Genus Hyalomma Koch, 1844. pp. 143-1148. In: Estrada-Peña, A., A. Mihalca, and T. Petney (eds.). Ticks of Europe and North Africa. Springer Nature, Cham, Switzerland.
  • Forbes, W.M., W.A. Gallimore, A. Mansingh, P.B. Reese, and R.D Robinson. 2014. Eryngial (trans-2-dodecenal), a bioactive compound from Eryngium foetidum: its identification, chemical isolation, characterization, and comparison with ivermectin in vitro. Parasitology 141(2), 269-278. Doi: https://doi.org/10.1017/S003118201300156X
  • Gonzales-Coloma, A., A.S. Olmeda, J. Burillo-Alquézar, J. Sanz, P. Sáinz, M.L. Umpierrez, and C. Rossini. 2013. Desarrollo de métodos de bioensayos con garrapatas aplicados a la detección de potenciales bioplaguicidas botánicos. pp. 58-71. In: Echeverri, F. and C. Rossini (eds.). Productos naturales contra parásitos externos del ganado bovino y ovino, tales como mosca de los cuernos y garrapatas. Ed. Universidad de Magallanes. Punta Arenas, Chile.
  • Jaramillo-Colorado, B.E., I.P. Martelo, and E. Duarte. 2012. Antioxidant and repellent activities of the essential oil from Colombian Triphasia trifolia (Burm. f.) P. Wilson. J. Agric. Food Chem. 60(25), 6364-6368. Doi: https://doi.org/10.1021/jf300461k
  • Jaramillo-Colorado, B.E., N. Pino-Benitez, and A. González-Coloma. 2019. Volatile composition and biocidal (antifeedant and phytotoxic) activity of the essential oils of four Piperaceae species from Choco-Colombia. Ind. Crops Prod. 138, 111463. Doi: https://doi.org/10.1016/j.indcrop.2019.06.026
  • Jaramillo-Colorado, B.E., R. Vega-Diaz, and C.N. Pino-Benitez. 2022. Volatile chemical composition of Colombian Plectranthus amboinicus (Lour.) Spreng. essential oil and its biocidal action against Tribolium castaneum (Herbst). Rev. Colomb. Cienc. Hortic. 16(1), e13413. Doi: https://doi.org/10.17584/rcch.2022v16i1.13413
  • Kumar, B., H.V. Manjunathachar, and S. Ghosh. 2020. A review on Hyalomma species infestations on human and animals and progress on management strategies. Heliyon 6(12), e05675. Doi: https://doi.org/10.1016/j.heliyon.2020.e05675
  • Leitão, D.S.T.C., F.C. Siqueira, S.H.B. Sousa, A.Z. Mercadante, R.C. Chisté, and A.S. Lopes. 2020. Amazonian Eryngium foetidum leaves exhibited very high contents of bioactive compounds and high singlet oxygen quenching capacity. Int. J. Food Prop. 23(1), 1452-1464. Doi: https://doi.org/10.1080/10942912.2020.1811311
  • Lew-Tabor, A.E. and M. Rodriguez. 2016. A review of reverse vaccinology approaches for the development of vaccines against ticks and tick-borne diseases. Ticks Tick Borne Dis. 7(4), 573-85. Doi: https://doi.org/10.1016/j.ttbdis.2015.12.012
  • Ngang, J.J.E., M.A. Nyegue, F.C. Ndoye, A.D.T. Kamgain, S.L.S. Kamdem, R. Lanciotti, F. Gardini, and F.-X. Etoa. 2014. Characterization of Mexican coriander (Eryngium foetidum) essential oil and its inactivation of listeria monocytogenes in vitro and during mild thermal pasteurization of pineapple juice. J. Food Prot. 77(3), 435-443. Doi: https://doi.org/10.4315/0362-028X.JFP-13-323
  • Ortiz de Elguea-Culebras, G., R. Sánchez-Vioque, M.I. Berruga, D. Herraiz-Peñalver, A. González-Coloma, M.F. Andrés, and O. Santana-Méridas. 2018. Biocidal potential and chemical composition of industrial essential oils from Hyssopus officinalis, Lavandula × intermedia var. super, and Santolina chamaecyparissus. Chem. Biodivers. 15(1), e1700313. Doi: https://doi.org/10.1002/cbdv.201700313
  • Paul, J.H.A., C.E. Seaforth, and T. Tikasingh. 2011. Eryngium foetidum L.: a review. Fitoterapia 82(3), 302-308. Doi: https://doi.org/10.1016/j.fitote.2010.11.010
  • Paw, M., R. Gogoi, N. Sarma, S. Saikia, S.K. Chanda, H. Lekhak, and M. Lal. 2022. Anti-microbial, anti-oxidant, anti-diabetic study of leaf essential oil of Eryngium foetidum L. along with the chemical profiling collected from North East India. J. Essent. Oil-Bear. Plants. 25(6), 1229-1241. Doi: https://doi.org/10.1080/0972060X.2022.2158044
  • Promtes, K., P. Kupradinun, A. Rungsipipat, S. Tuntipopipat, and C. Butryee. 2016. Hemopreventive effects of Eryngium foetidum L. leaves on COX-2 reduction in mice induced colorectal carcinogenesis. Nutr. Cancer 68(1), 144-153. Doi: https://doi.org/10.1080/01635581.2016.1115103
  • Rodrigues, T.L.M., G.L.S. Castro, R.G. Viana, E.S.C. Gurgel, S.G. Silva, M.S. Oliveira, and E.H.A. Andrade. 2021. Physiological performance and chemical compositions of the Eryngium foetidum L. (Apiaceae) essential oil cultivated with different fertilizer sources. Nat. Prod. Res. 35(23), 5544-5548. Doi: https://doi.org/10.1080/14786419.2020.1795653
  • Rodrigues, T.L.M., M.E.P. Silva, E.S.C. Gurgel, M.S. Oliveira, and F.C.A Lucas. 2022. Eryngium foetidum L. (Apiaceae): a literature review of traditional uses, chemical composition, and pharmacological activities. Evid. Based Complement. Alternat. Med. 2022, 2896895. Doi: https://doi.org/10.1155/2022/2896895
  • Rys, M., D. Saja-Garbarz, and A. Skoczowski. 2022. Phytotoxic effects of selected herbal extracts on the germination, growth and metabolism of mustard and oilseed rape. Agronomy 12, 110. Doi: https://doi.org/10.3390/agronomy12010110
  • Sumitha, K.V., V. Prajitha, V.N. Sandhya, S. Anjana, and J.E. Thoppil. 2014. Potential larvicidal principles in Eryngium foetidum L. (Apiaceae), an omnipresent weed, effective against Aedes albopictus Skuse. J. Essent. Oil-Bear. Plants 17(6), 1279-1286. Doi: https://doi.org/10.1080/0972060X.2014.958544
  • Thomas, P.S., E.E Essien, S.J. Ntuk, and M.I. Choudhary. 2017. Eryngium foetidum L. essential oils: chemical composition and antioxidant capacity. Medicines 4(2), 24. Doi: https://doi.org/10.3390/medicines4020024
  • Vasconcelos, L.C., T.T. Carrijo, A.N. Venancio, T.A. Alves., A.C. Tuler, R.K. Hollunder., M.L. Garbin, L. Menini, and M.M. Praca-Fontes. 2022. Phytochemical screening and phytocytotoxic effects of the tropical Myrcia vittoriana (Myrtaceae). An. Acad. Bras. Cienc. 94(3), e20210820. Doi: https://doi.org/10.1590/0001-3765202220210820
  • Zhang, X., J. Chen, S. Zhou, and H. Zhao. 2022. Ethanol extract of Eryngium Foetidum leaves induces mitochondrial associated apoptosis via ROS generation in human gastric cancer cells. Nutr. Cancer 74(8), 2996-3006. Doi: https://doi.org/10.1080/01635581.2022.2028864

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a